{"policy_class": {":type:": "", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe7094616c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658869329.4487984, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAjkIdP2dSF7/q4CA+JnWnvg4xab9VZSw/6s2fv4B5Bb84iAW/xwSSP07tTj4TuEW+XOtLP2vFTj+z9Dg/FOkIPIRHmb3D81o+WaJ3v+PVa75aNZA/SBwCPyXuW79reYK8IgsHP0jfvj48HAE/3j6NvyiZ4L4pV4S/ovIAv7khFUBM5qK/eZFfwJAtJT6GywU9b4GaPw4RjT9JL4u+QkalP8lh0j62MBE/G7WDPtaxpr+Gza+/OQlXOy74zz612JQ/5VtkvqCSdL/4vRK/8U10vSILBz9I374+PBwBP94+jb9zp/I+XAJLPlabLj/DCAQ//HlTPhaeTb+bNSu+7pyzvk8Xij/+RPC+jByHPTJ03T9jXgy/sY3rPbRTwD3fTl89Tgaov1D4DD0NDEk+Qso8QPeiYr/1QFS/BainPlMyl7/SpfK/SN++PmrM/b/ePo2/3e4bP8RGIr/zE+Q96l3DP/jNxb9QXw7AQzjVvlosOL7ezn8/AkWiP0ASx7xsnMG+PirvPnbTsT9fz+M9/FtCv55OrL96GxE/5/FUvgFkQz/L6ri+BT/1Ps13Mb+zVTM/IgsHP0jfvj48HAE/3j6Nv5R0lGIu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAL8IWzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDiMce9AAAAAD3A/r8AAAAADHLEPQAAAADe4Pw/AAAAAAP5XTwAAAAA1ifnPwAAAAB8UZU9AAAAAGxq8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGbUq1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdE0KPgAAAAD3wuu/AAAAAPtvCz4AAAAAzVvjPwAAAAAR9F09AAAAAGFH7j8AAAAAPQ7FPQAAAAAfR/m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXVTxtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFqkoz0AAAAAWhv0vwAAAACMw7K9AAAAADoK/T8AAAAAgzFKPQAAAAAPZvc/AAAAACLTFL0AAAAAmU7lvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKFoGjcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBw00C9AAAAAI6s878AAAAAdOvcPQAAAACyKuA/AAAAAMKf+D0AAAAAV9/cPwAAAABG6wG+AAAAAIBV4L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJLk7vVmSQqMAWyUTegDjAF0lEdAp9+5gG8mKXV9lChoBkdAkn00XLvCuWgHTegDaAhHQKfirgl4TsZ1fZQoaAZHQJHlQWN3np1oB03oA2gIR0Cn5DjTjNpudX2UKGgGR0CWN5PJq7AdaAdN6ANoCEdAp+fTGkvboXV9lChoBkdAlQ8zM3ZPEmgHTegDaAhHQKfr3KB/Zuh1fZQoaAZHQJLqgj+rELpoB03oA2gIR0Cn75tsenyedX2UKGgGR0CRD7FZxJd0aAdN6ANoCEdAp/GnMINVinV9lChoBkdAkw6YgNgBtGgHTegDaAhHQKf1PBpHqeN1fZQoaAZHQJUgZ49ovi9oB03oA2gIR0Cn+U9g4OtodX2UKGgGR0CTD7PQv6CUaAdN6ANoCEdAp/xBsGgSOHV9lChoBkdAlEOtbPhQ32gHTegDaAhHQKf9x2TPjXF1fZQoaAZHQJNl99iMHbBoB03oA2gIR0CoAWIlUp/gdX2UKGgGR0CRbJx8lXzUaAdN6ANoCEdAqAVxz1bqyHV9lChoBkdAkLGgOSW7e2gHTegDaAhHQKgIYQxvegt1fZQoaAZHQI5PoZ2pyZNoB03oA2gIR0CoCdqDTSb6dX2UKGgGR0CTAHOxjawmaAdN6ANoCEdAqA1i+tbLU3V9lChoBkdAkM5Eo8ZDRmgHTegDaAhHQKgRcA0bcXZ1fZQoaAZHQJKkV75VOsVoB03oA2gIR0CoFGAh0QsgdX2UKGgGR0CTO8AZsKsuaAdN6ANoCEdAqBXiOvMbFXV9lChoBkdAkxITj7yhBmgHTegDaAhHQKgZbrqMWGh1fZQoaAZHQJQWfGipNsZoB03oA2gIR0CoHYnRsuWbdX2UKGgGR0CSfSqn3ta7aAdN6ANoCEdAqCCGO801qHV9lChoBkdAk9o5FgDzRWgHTegDaAhHQKgiA0+C9RJ1fZQoaAZHQJNsH1DjR2NoB03oA2gIR0CoJaNknTiLdX2UKGgGR0CUZfVx0dR0aAdN6ANoCEdAqCmvhGYrrnV9lChoBkdAkg7Ex20Re2gHTegDaAhHQKgspPJJXhh1fZQoaAZHQJHT4nKGL1poB03oA2gIR0CoLiyQ5myxdX2UKGgGR0CS0reRxLkCaAdN6ANoCEdAqDHLqt5lfHV9lChoBkdAkzdD4593KWgHTegDaAhHQKg12HrQgLZ1fZQoaAZHQI2kEpVjqfRoB03oA2gIR0CoONXuVopQdX2UKGgGR0CE/9I5o4+9aAdN6ANoCEdAqDptpoK2KHV9lChoBkdAj2iu3lS0jWgHTegDaAhHQKg+C5bQkX11fZQoaAZHQJAF1aaCtihoB03oA2gIR0CoQi/Aj6eodX2UKGgGR0CQ0KfjCHh1aAdN6ANoCEdAqEUuS2Yv4HV9lChoBkdAjkcYV6/qPmgHTegDaAhHQKhGpxRVIZt1fZQoaAZHQJCnUyvcJt1oB03oA2gIR0CoSioXbdrPdX2UKGgGR0CNlNM9KVY7aAdN6ANoCEdAqE45qASWaHV9lChoBkdAjPRDbzshPmgHTegDaAhHQKhRJzjFQ2x1fZQoaAZHQJCH+WpqASZoB03oA2gIR0CoUqQBHTZydX2UKGgGR0COlxw7T2FnaAdN6ANoCEdAqFY4EOiFkHV9lChoBkdAkX8Tw6QvH2gHTegDaAhHQKhaTSofjjt1fZQoaAZHQJFgkzi0fHRoB03oA2gIR0CoXVnskY4ydX2UKGgGR0CSsHhLXcxkaAdN6ANoCEdAqF7qn752yXV9lChoBkdAkibP3i704GgHTegDaAhHQKhic/nGKht1fZQoaAZHQJSTiN1hb4doB03oA2gIR0CoZpoEjgQ6dX2UKGgGR0CSt9ck+otMaAdN6ANoCEdAqGmgF5fMOnV9lChoBkdAk1NAG0NSZWgHTegDaAhHQKhrIeCCjDd1fZQoaAZHQJWnJSCOFQFoB03oA2gIR0CobrTT4L1FdX2UKGgGR0CVHqdMTN+taAdN6ANoCEdAqHLbgVGkOHV9lChoBkdAmBOxlpXZG2gHTegDaAhHQKh12FW4mTl1fZQoaAZHQJJjTFtKqXFoB03oA2gIR0Cod1gjhUBGdX2UKGgGR0CTkAO9WZJDaAdN6ANoCEdAqHraLn9vTHV9lChoBkdAkrxwbuMMqmgHTegDaAhHQKh+8jOcDr91fZQoaAZHQJSKgzi0fHRoB03oA2gIR0CogeD6nBLxdX2UKGgGR0CR/aZR8+ibaAdN6ANoCEdAqINazZ6D5HV9lChoBkdAlSkMBU70WmgHTegDaAhHQKiG7dGAkLR1fZQoaAZHQJEVcnRb8m9oB03oA2gIR0CoivfUnXumdX2UKGgGR0CJerofSx7iaAdN6ANoCEdAqI3wBNmDlHV9lChoBkdAkfVuhXbM5mgHTegDaAhHQKiPcvYe1a51fZQoaAZHQJUqHGZNO/NoB03oA2gIR0Cokv1cUucudX2UKGgGR0CTA0cophF3aAdN6ANoCEdAqJcGOU+s5nV9lChoBkdAlDN2GIsRQWgHTegDaAhHQKiaEsS00Fd1fZQoaAZHQJPdxxLkCFNoB03oA2gIR0Com5JosZpBdX2UKGgGR0CTDNsEq2BraAdN6ANoCEdAqJ8SVyFPBXV9lChoBkdAk+rNZA6dUmgHTegDaAhHQKijGgfU4Jh1fZQoaAZHQJE9VhBqsU9oB03oA2gIR0CophOrhisodX2UKGgGR0CTiM96kZaWaAdN6ANoCEdAqKeSuEEkjXV9lChoBkdAkmdIEr5IpmgHTegDaAhHQKirqFRHf/F1fZQoaAZHQJSR473fygBoB03oA2gIR0CosKdvS+g2dX2UKGgGR0CSclUZvUBoaAdN6ANoCEdAqLOmNtIkJXV9lChoBkdAkr403XI2fmgHTegDaAhHQKi1J95yEL91fZQoaAZHQJGWqNtIkJNoB03oA2gIR0CouMfNJOFhdX2UKGgGR0CHlUmixmkFaAdN6ANoCEdAqLzhudf9gnV9lChoBkdAlUjeiN83M2gHTegDaAhHQKi/0QBgeBB1fZQoaAZHQJX2djjJdSloB03oA2gIR0CowU+NT987dX2UKGgGR0CW0TQwK0D2aAdN6ANoCEdAqMTkDlo11nV9lChoBkdAlEp0RFqi5GgHTegDaAhHQKjI+MnZ00Z1fZQoaAZHQJKM+R2bG3poB03oA2gIR0Coy/fiYLLIdX2UKGgGR0CTF/B6a9bpaAdN6ANoCEdAqM14uM+/xnV9lChoBkdAkkwHtjTa02gHTegDaAhHQKjRD3TNMXd1fZQoaAZHQJNAvU6PsAxoB03oA2gIR0Co1TSNwR5DdX2UKGgGR0CTNmY150KaaAdN6ANoCEdAqNg3dKujh3V9lChoBkdAkgUjmwJPZmgHTegDaAhHQKjZu/bj94x1fZQoaAZHQJFS5BcAzYVoB03oA2gIR0Co3VkBS1mbdX2UKGgGR0CRfH580DU3aAdN6ANoCEdAqOF+ugYgq3V9lChoBkdAkzqudsi0OWgHTegDaAhHQKjkejt5UtJ1fZQoaAZHQJJ/rPTodMloB03oA2gIR0Co5f+HzpX7dX2UKGgGR0CSBJ+/QBxQaAdN6ANoCEdAqOmx3Tuv2XV9lChoBkdAfj4E2pAD72gHTegDaAhHQKjt4wcHWz51fZQoaAZHQJNjq7/XGwRoB03oA2gIR0Co8OWnCO3ldX2UKGgGR0CSEudlum78aAdN6ANoCEdAqPJrSCvovHV9lChoBkdAkeFN5D7ZWmgHTegDaAhHQKj2GPZIxxl1fZQoaAZHQJFYa7OE/SpoB03oA2gIR0Co+lCLl3hXdX2UKGgGR0CTO7tFrl/6aAdN6ANoCEdAqP1VVaOghHV9lChoBkdAkeC8IzFdcGgHTegDaAhHQKj+0/xDst11fZQoaAZHQJKMnuG9HtpoB03oA2gIR0CpAmrWy1NQdX2UKGgGR0CSQBnvUjLTaAdN6ANoCEdAqQaaLwWnCXV9lChoBkdAkYW0EPlMiGgHTegDaAhHQKkJo5iExqR1fZQoaAZHQJGS+gOBlMBoB03oA2gIR0CpCySy2QXAdX2UKGgGR0CRKlsLORkmaAdN6ANoCEdAqQ7ab4Ju23VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}