update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- rouge
|
6 |
+
- bleu
|
7 |
+
model-index:
|
8 |
+
- name: timesformer-bert-video-captioning
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# timesformer-bert-video-captioning
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.2821
|
20 |
+
- Rouge1: 30.0468
|
21 |
+
- Rouge2: 8.4998
|
22 |
+
- Rougel: 29.0632
|
23 |
+
- Rougelsum: 29.0231
|
24 |
+
- Bleu: 4.8298
|
25 |
+
- Gen Len: 9.5332
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 5e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 2
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Bleu | Gen Len | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
55 |
+
|:-------------:|:-----:|:----:|:------:|:-------:|:---------------:|:-------:|:------:|:-------:|:---------:|
|
56 |
+
| 2.4961 | 0.12 | 200 | 1.5879 | 9.5332 | 1.6548 | 25.4717 | 5.11 | 24.6679 | 24.6696 |
|
57 |
+
| 1.6561 | 0.25 | 400 | 2.3515 | 9.5332 | 1.5339 | 26.1748 | 5.9106 | 25.413 | 25.3958 |
|
58 |
+
| 1.5772 | 0.37 | 600 | 2.266 | 9.5332 | 1.4510 | 28.6891 | 6.0431 | 27.7387 | 27.8043 |
|
59 |
+
| 1.492 | 0.49 | 800 | 3.6517 | 9.5332 | 1.3760 | 29.0257 | 7.8515 | 28.3142 | 28.3036 |
|
60 |
+
| 1.4736 | 0.61 | 1000 | 3.4866 | 9.5332 | 1.3425 | 27.9774 | 6.2175 | 26.7783 | 26.7207 |
|
61 |
+
| 1.3856 | 0.74 | 1200 | 3.1649 | 9.5332 | 1.3118 | 27.3532 | 6.5569 | 26.4964 | 26.5087 |
|
62 |
+
| 1.3972 | 0.86 | 1400 | 3.5337 | 9.5332 | 1.2868 | 28.233 | 7.6471 | 27.3651 | 27.3354 |
|
63 |
+
| 1.374 | 0.98 | 1600 | 3.5737 | 9.5332 | 1.2571 | 28.8216 | 7.542 | 27.9166 | 27.9353 |
|
64 |
+
| 1.2207 | 1.1 | 1800 | 3.7983 | 9.5332 | 1.3362 | 29.9574 | 8.1088 | 28.8866 | 28.855 |
|
65 |
+
| 1.1861 | 1.23 | 2000 | 3.6521 | 9.5332 | 1.3295 | 30.072 | 7.7799 | 28.8417 | 28.864 |
|
66 |
+
| 1.1173 | 1.35 | 2200 | 3.9784 | 9.5332 | 1.3335 | 29.736 | 7.9661 | 28.6877 | 28.6974 |
|
67 |
+
| 1.1255 | 1.47 | 2400 | 4.3021 | 9.5332 | 1.3097 | 29.8176 | 8.4656 | 28.958 | 28.9571 |
|
68 |
+
| 1.0909 | 1.6 | 2600 | 1.3095 | 30.0233 | 8.4896 | 29.2562 | 29.2375| 4.4782 | 9.5332 |
|
69 |
+
| 1.1205 | 1.72 | 2800 | 1.2992 | 29.7164 | 8.007 | 28.5027 | 28.5018| 4.44 | 9.5332 |
|
70 |
+
| 1.1069 | 1.84 | 3000 | 1.2830 | 29.851 | 8.4312 | 28.8139 | 28.8205| 4.6065 | 9.5332 |
|
71 |
+
| 1.076 | 1.96 | 3200 | 1.2821 | 30.0468 | 8.4998 | 29.0632 | 29.0231| 4.8298 | 9.5332 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.30.2
|
77 |
+
- Pytorch 2.0.1+cu118
|
78 |
+
- Datasets 2.13.1
|
79 |
+
- Tokenizers 0.13.3
|