|
import transformers |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
from transformers import ViTFeatureExtractor, ViTModel, ViTConfig |
|
from typing import List, Optional, Tuple, Union |
|
import warnings |
|
import ipdb |
|
import os |
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss, MSELoss |
|
from itertools import product |
|
import numpy as np |
|
import transformers.models.git.modeling_git as modeling_git |
|
import transformers.models.vit.modeling_vit as modeling_vit |
|
from transformers.models.opt.modeling_opt import OPTConfig |
|
import transformers.models.opt.modeling_opt as hg_opt |
|
import transformers.models.clip.modeling_clip as modeling_clip |
|
from transformers.modeling_outputs import SequenceClassifierOutputWithPast |
|
|
|
|
|
class GitForCausalLM(modeling_git.GitForCausalLM): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
del self.output |
|
self.output = nn.Linear( |
|
self.config.hidden_size, |
|
self.config.vocab_size, |
|
bias=False) |
|
self.post_init() |
|
|
|
del self.git.image_encoder |
|
self.git.image_encoder = ViTModel.from_pretrained('facebook/dino-vitb16') |
|
dino_cfg = self.git.image_encoder.config |
|
config = self.git.config |
|
config.vision_config.hidden_size = dino_cfg.hidden_size |
|
|
|
del self.git.visual_projection |
|
self.git.visual_projection = modeling_git.GitProjection(config) |
|
num_tks = (dino_cfg.image_size // dino_cfg.patch_size) ** 2 + 1 |
|
self.git.encoder.layer[0].attention.self.image_patch_tokens = num_tks |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.Tensor]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], modeling_git.CausalLMOutputWithPast]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
if labels is not None: |
|
use_cache = False |
|
|
|
outputs = self.git( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
pixel_values=pixel_values, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
logits = self.output(sequence_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
if pixel_values is not None: |
|
num_image_tokens = self.git.encoder.layer[0].attention.self.image_patch_tokens |
|
else: |
|
num_image_tokens = 0 |
|
shifted_logits = logits[:, num_image_tokens:-1, :].contiguous() |
|
labels = labels[:, 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return modeling_git.CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class GitForSequenceClassification(modeling_git.GitPreTrainedModel): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.num_labels = self.config.num_labels |
|
self.classifier = nn.Linear( |
|
self.config.hidden_size, |
|
self.config.num_labels, |
|
bias=False) |
|
self.post_init() |
|
self.git = modeling_git.GitModel(self.config) |
|
|
|
del self.git.image_encoder |
|
self.git.image_encoder = ViTModel.from_pretrained('facebook/dino-vitb16') |
|
dino_cfg = self.git.image_encoder.config |
|
config = self.git.config |
|
config.vision_config.hidden_size = dino_cfg.hidden_size |
|
|
|
del self.git.visual_projection |
|
self.git.visual_projection = modeling_git.GitProjection(config) |
|
num_tks = (dino_cfg.image_size // dino_cfg.patch_size) ** 2 + 1 |
|
self.git.encoder.layer[0].attention.self.image_patch_tokens = num_tks |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
*args, **kwargs) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.git( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
pixel_values=pixel_values, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
*args, **kwargs) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.classifier(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size, sequence_length = input_ids.shape[:2] |
|
else: |
|
batch_size, sequence_length = inputs_embeds.shape[:2] |
|
|
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
|
|
|
|
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
|
|
if not return_dict: |
|
output = (pooled_logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |