{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb33734f520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb33734f5b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb33734f640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb33734f6d0>", "_build": "<function ActorCriticPolicy._build at 0x7bb33734f760>", "forward": "<function ActorCriticPolicy.forward at 0x7bb33734f7f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb33734f880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb33734f910>", "_predict": "<function ActorCriticPolicy._predict at 0x7bb33734f9a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb33734fa30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb33734fac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb33734fb50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb3374f5800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716195614674230990, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALM8az1Iu6e6NQpMthzIQLG+2W66Gj1yNQAAgD8AAIA/TUk4PYcupj+y5qI+vT7jvv72eT18ZUw+AAAAAAAAAACAQ7I9sqGAPxoUgT0rgJS+aYUWPiJHr7wAAAAAAAAAAIDPIj442fi7lapvOrs+Cb2hPDc+gyuePgAAgD8AAIA/Pa1svqzpzD5p2Is+hGRwvm5h7LzKCnA+AAAAAAAAAAAzU9u8nn+OP3rzCr5Pc+W+iBiQvHtdLb0AAAAAAAAAAM10rzspgGC6igySu5CqaTg1ArQ6K7LhOAAAgD8AAIA/zUFLPZc0fT7qBJO9LPeOvpKDDTsM0oI7AAAAAAAAAADALdC9KQFgPc1aCj6DJzm+NIyqvCJVozsAAAAAAAAAAA2rCb636Dw++xXuPUK6hL7u+1c9hh9mvQAAAAAAAAAAINYwPlYgBj9WIzK+4oWxvtrE7ryNpBi+AAAAAAAAAADa1YC97xYEPsvgvT1EaI6+aHV6vSgKWz0AAAAAAAAAANrE8b24ltC5orttu2anZjcqkES7BDKNOgAAgD8AAIA/4OZfPrYbgT/8scg+FL29vlWstz5W2Hg8AAAAAAAAAACN3Dq+ePqCP/7OCb8hTRu/nb9Jvi4ylr4AAAAAAAAAAJrljLzklBQ+6WIiPa/Qar5urPu7OUgxOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEpCuLaVUuOMAWyUS82MAXSUR0CQ7y9Pk7wKdX2UKGgGR0ByqdqveP7vaAdNiAFoCEdAkPCa+ajN6nV9lChoBkdAbo+Aiml67mgHTQkBaAhHQJDwseOn2qV1fZQoaAZHQG+T94FA3UBoB001AmgIR0CQ8RnXNC7cdX2UKGgGR0BJF5ksjFAFaAdLymgIR0CQ8ZNqxkd4dX2UKGgGR0Bx6qKR+z+naAdNMgFoCEdAkPISPyTY/XV9lChoBkdAUl3RG+bmVGgHS8hoCEdAkPJiV4X403V9lChoBkdAcUR/p+tr9GgHTQkBaAhHQJDyslIEr5J1fZQoaAZHQHByyaNMoMNoB0v3aAhHQJDzWois4kx1fZQoaAZHQHE5USZjQRhoB00uAWgIR0CQ8+YeT3ZgdX2UKGgGR0Axv19v0h/zaAdL1mgIR0CQ9CYPoV2zdX2UKGgGR0BxjeNrCWNWaAdNUAFoCEdAkPSAXdj5K3V9lChoBkdAcN6JDE3sHGgHTS4BaAhHQJD09TefqX51fZQoaAZHQHFldhqj8DVoB00mAWgIR0CQ9dvexfOVdX2UKGgGR0BwnZG6PKdQaAdNJQFoCEdAkPX3vQWvbHV9lChoBkdAVZy7wrlNlGgHS7RoCEdAkPekovzvqnV9lChoBkdAcK0GFBY3emgHTVIBaAhHQJD5ei+L3sZ1fZQoaAZHQHFrJkGzKLdoB00/AWgIR0CQ+ybsniNsdX2UKGgGR0BxFaRZEDyOaAdNwgFoCEdAkPs8Md92HXV9lChoBkdAcTbGrS3LFGgHTSUBaAhHQJD7aVdHDrJ1fZQoaAZHQHF0RmseXAxoB00sAWgIR0CQ/JBlMAWBdX2UKGgGR0BxC5ybQTmGaAdNlQFoCEdAkP4Klk6LfnV9lChoBkdAcOppblijL2gHTXYBaAhHQJD+Bb4agmJ1fZQoaAZHQG+rudPLxI9oB02WAWgIR0CQ/izgdfb9dX2UKGgGR0Bxi+7f51vEaAdNDQFoCEdAkP5wFs54nnV9lChoBkdAcEppvgm7a2gHS+9oCEdAkP57pA2Q4nV9lChoBkdAcVG495hScmgHTTwBaAhHQJD+wjhUBGR1fZQoaAZHQHBM9G7SRbNoB00GAWgIR0CQ/zrs0HhTdX2UKGgGR0Bx/kNnXd0raAdNqwFoCEdAkQKgAuIykHV9lChoBkdAb/9CAtnPFGgHTcoBaAhHQJEE6cx0uDl1fZQoaAZHQHBRg1ejVQRoB0vmaAhHQJEFcakyk9F1fZQoaAZHQHIG4x1xKg9oB00eAWgIR0CRBs225QP7dX2UKGgGR0BSSf0AcT8HaAdL2mgIR0CRBy/DtPYWdX2UKGgGR0BxzU76pHZsaAdL92gIR0CRCAS1maphdX2UKGgGR0BxVONzbN8maAdNRgFoCEdAkQiaOtGNJnV9lChoBkdAcBX0WM0gsGgHTQsBaAhHQJEJCZNO/L11fZQoaAZHQHBni3G4qgBoB01/AWgIR0CRC3Zc9nscdX2UKGgGR0BxSzKW9lEraAdNFAFoCEdAkQub7wazeHV9lChoBkdAcXn6mfoRqWgHTYACaAhHQJEMU/OdGy51fZQoaAZHQEgO6IWP91loB0vJaAhHQJEPElIEr5J1fZQoaAZHQHJPXaews5JoB00NAWgIR0CRD5cbzbvgdX2UKGgGR0A9b7m+0w8GaAdLwWgIR0CRIcmig00ndX2UKGgGR0Bx0TXd0q6OaAdNvAFoCEdAkSIXFPznR3V9lChoBkdAbZdneSB9TmgHTa4BaAhHQJEiShdt2s91fZQoaAZHQHC7qo/A0sRoB009AmgIR0CRInjFhodudX2UKGgGR0BxGfvmYBvKaAdNEwFoCEdAkSKEKZ2IPHV9lChoBkdAb6khXbM5fmgHTckBaAhHQJEivilzltF1fZQoaAZHQHCeR8twrDtoB0vyaAhHQJEi2UbDMvB1fZQoaAZHQHLfb4BV+7VoB02YAmgIR0CRI3tALRa5dX2UKGgGR0BzPsLtu1neaAdNKQFoCEdAkSUXGS6lL3V9lChoBkdAb5nZyMkyDmgHTSUBaAhHQJElSCWeHzp1fZQoaAZHQG8c4HX2/SJoB00CAWgIR0CRJZ//NqxkdX2UKGgGR0BvSaEBbOeKaAdNEwFoCEdAkSafNA1NxnV9lChoBkdAbgZYywfQr2gHTT8BaAhHQJEnmFoL5RF1fZQoaAZHQHCUnyiEg4hoB03AAWgIR0CRKL3M6ij+dX2UKGgGR0Bu8YuRLbpNaAdNIgFoCEdAkSk6SPluFnV9lChoBkdAcly9AX2ugmgHS/5oCEdAkSluCK77K3V9lChoBkdAcZE2C/XXiGgHTQIBaAhHQJEpyfRNRFZ1fZQoaAZHQHG4HDR+jM5oB00nAWgIR0CRKcmx+rlvdX2UKGgGR0BtGnX05EMLaAdL/mgIR0CRKnQ3PzFudX2UKGgGR0Bwwlzr/sE8aAdNCwFoCEdAkSpr3K0UoXV9lChoBkdAcSAqsU7CBWgHTQIBaAhHQJErS24NI9V1fZQoaAZHQHFznI+4b0hoB00LAWgIR0CRLW5MlC1JdX2UKGgGR0Bva9J6IFeOaAdNZwFoCEdAkS1uPikwe3V9lChoBkdAbYb2U0Nz82gHTQgBaAhHQJEtnhCMPz51fZQoaAZHQHHI7gbZOBVoB00lAWgIR0CRLfWUbDMvdX2UKGgGR0BEsKcEvCdjaAdLwWgIR0CRLmmZ3LV4dX2UKGgGR0By6Vy4nWrfaAdNoAFoCEdAkS7ILofSyHV9lChoBkdAcCT5q/M4cWgHTSwBaAhHQJEvlbjcVQB1fZQoaAZHQEh9SS/0ulJoB0u7aAhHQJEv3aSLZSN1fZQoaAZHQHIYL6ciGFloB01DAWgIR0CRMR9If8uSdX2UKGgGR0BxjZXq7iAEaAdNIwFoCEdAkTG8fvF3p3V9lChoBkdAcpizGxUvPGgHTTUBaAhHQJEy3QBxPwd1fZQoaAZHQHGXRJ7LMcJoB002AmgIR0CRMwOxSpBHdX2UKGgGR0Bue3JPqLTAaAdNQwFoCEdAkTNPldTo+3V9lChoBkdAcHxSZ0CA+mgHTR0BaAhHQJEzu5lOGj91fZQoaAZHQHKglW8yvcJoB00/AWgIR0CRM8+KCQLedX2UKGgGR0BxiQq5LAYYaAdNeAFoCEdAkTR8tCiRGXV9lChoBkdAcSMaRISUT2gHS/hoCEdAkTSmEsasIXV9lChoBkdAcP+OuaF23mgHTQQBaAhHQJE1J8ma6SV1fZQoaAZHQHHOywfQrtpoB00KAWgIR0CRNbbUgB91dX2UKGgGR0Bxxc6IWP92aAdNIAFoCEdAkTXKXa8HwHV9lChoBkdAccgHyEtdzGgHS/hoCEdAkTYjs2NvO3V9lChoBkdAbvRASnLq2WgHTQkBaAhHQJE4IskIHC51fZQoaAZHQHIKavaDf3xoB00kAWgIR0CRONA1ejVQdX2UKGgGR0BLWx59mYjTaAdLxmgIR0CROZvMbFS9dX2UKGgGR0Bw5YyTINmUaAdL92gIR0CROedPLxI8dX2UKGgGR0BxHbsZ5zHTaAdNkQFoCEdAkTt9v863iXV9lChoBkdAcNS32EkB0mgHTTwBaAhHQJE77Hfdhy91fZQoaAZHQHC7eTA31jBoB0v1aAhHQJE77jlxOtZ1fZQoaAZHQHHgLMgU1yhoB0v1aAhHQJE8kuCf6Gh1fZQoaAZHQHHkRfOUt7NoB00XAWgIR0CRPLwjt5UtdX2UKGgGR0BxlDLZBcAzaAdNAwFoCEdAkT0GHxjJ+3V9lChoBkdAcfTk3S8aoGgHTQABaAhHQJE+AT37DVJ1fZQoaAZHQHIzjJ2dNFloB00aAWgIR0CRPzYjB2wFdX2UKGgGR0Bw0+s0YTCcaAdNGwFoCEdAkUDPZAY51nV9lChoBkdAcfaf6GgzxmgHTScBaAhHQJFBOy/sVtZ1fZQoaAZHQHAFbkXDWLBoB00qAWgIR0CRQcIVM23sdX2UKGgGR0BPiHcL0BfbaAdLzmgIR0CRQc1yeZogdX2UKGgGR0BwZ/uPV/c4aAdNBAFoCEdAkUJ6EvkBCHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |