metadata
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
model-index:
- name: Llama-2-7b-gen-dpo-10k
results: []
Llama-2-7b-gen-dpo-10k
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5523
- Rewards/real: 4.9937
- Rewards/generated: 2.9393
- Rewards/accuracies: 0.8462
- Rewards/margins: 2.0544
- Logps/generated: -253.2762
- Logps/real: -213.7525
- Logits/generated: -0.8742
- Logits/real: -0.8781
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/real | Rewards/generated | Rewards/accuracies | Rewards/margins | Logps/generated | Logps/real | Logits/generated | Logits/real |
---|---|---|---|---|---|---|---|---|---|---|---|
0.9274 | 0.1984 | 62 | 0.9072 | 0.3392 | 0.2823 | 0.5769 | 0.0569 | -279.8465 | -260.2975 | -0.8569 | -0.8220 |
0.7991 | 0.3968 | 124 | 0.7609 | 1.1652 | 0.5108 | 0.75 | 0.6543 | -277.5608 | -252.0375 | -0.7345 | -0.6920 |
0.7105 | 0.5952 | 186 | 0.6948 | 2.1035 | 1.1496 | 0.75 | 0.9539 | -271.1730 | -242.6541 | -0.7212 | -0.6757 |
0.6956 | 0.7936 | 248 | 0.6513 | 2.5451 | 1.4131 | 0.7692 | 1.1320 | -268.5384 | -238.2380 | -0.7591 | -0.7111 |
0.6502 | 0.992 | 310 | 0.6210 | 2.9937 | 1.6865 | 0.8269 | 1.3073 | -265.8045 | -233.7518 | -0.8166 | -0.7765 |
0.5016 | 1.1904 | 372 | 0.5914 | 3.5957 | 2.0722 | 0.8269 | 1.5235 | -261.9469 | -227.7318 | -0.8192 | -0.7953 |
0.5296 | 1.3888 | 434 | 0.5809 | 4.1921 | 2.5569 | 0.8462 | 1.6352 | -257.1006 | -221.7682 | -0.8477 | -0.8234 |
0.4344 | 1.5872 | 496 | 0.5769 | 4.4690 | 2.6897 | 0.8462 | 1.7792 | -255.7717 | -218.9994 | -0.8474 | -0.8298 |
0.513 | 1.7856 | 558 | 0.5656 | 4.6486 | 2.8940 | 0.8462 | 1.7546 | -253.7296 | -217.2037 | -0.8719 | -0.8539 |
0.4632 | 1.984 | 620 | 0.5639 | 4.7129 | 2.9278 | 0.8462 | 1.7851 | -253.3908 | -216.5599 | -0.8339 | -0.8251 |
0.391 | 2.1824 | 682 | 0.5555 | 4.8380 | 2.9011 | 0.8462 | 1.9369 | -253.6578 | -215.3090 | -0.8728 | -0.8686 |
0.3823 | 2.3808 | 744 | 0.5525 | 4.9421 | 2.9736 | 0.8462 | 1.9685 | -252.9326 | -214.2682 | -0.8613 | -0.8617 |
0.3705 | 2.5792 | 806 | 0.5512 | 4.9861 | 2.9682 | 0.8654 | 2.0178 | -252.9866 | -213.8285 | -0.8641 | -0.8686 |
0.3718 | 2.7776 | 868 | 0.5555 | 5.0071 | 2.9724 | 0.8462 | 2.0347 | -252.9452 | -213.6185 | -0.8636 | -0.8680 |
0.4001 | 2.976 | 930 | 0.5523 | 4.9937 | 2.9393 | 0.8462 | 2.0544 | -253.2762 | -213.7525 | -0.8742 | -0.8781 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.2.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1