AmelieSchreiber
commited on
Commit
•
d504f0a
1
Parent(s):
c0b7d88
Upload 8 files
Browse files- clustered_ppi_train.py +160 -0
- config (6).json +30 -0
- model.safetensors +3 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +597 -0
- training_args.bin +3 -0
clustered_ppi_train.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForMaskedLM, TrainerCallback, EsmConfig
|
2 |
+
from torch.utils.data import Dataset
|
3 |
+
import pandas as pd
|
4 |
+
import torch
|
5 |
+
from torch.optim import AdamW
|
6 |
+
import random
|
7 |
+
import datetime
|
8 |
+
|
9 |
+
class ProteinDataset(Dataset):
|
10 |
+
def __init__(self, proteins, peptides, tokenizer, mask_percentage=0.30):
|
11 |
+
self.tokenizer = tokenizer
|
12 |
+
self.proteins = proteins
|
13 |
+
self.peptides = peptides
|
14 |
+
self.mask_percentage = mask_percentage
|
15 |
+
|
16 |
+
def __len__(self):
|
17 |
+
return len(self.proteins)
|
18 |
+
|
19 |
+
def mask_sequence(self, sequence):
|
20 |
+
mask_indices = random.sample(range(len(sequence)), int(len(sequence) * self.mask_percentage))
|
21 |
+
return ''.join([self.tokenizer.mask_token if i in mask_indices else char for i, char in enumerate(sequence)])
|
22 |
+
|
23 |
+
def __getitem__(self, idx):
|
24 |
+
protein_seq = self.proteins[idx]
|
25 |
+
peptide_seq = self.peptides[idx]
|
26 |
+
|
27 |
+
masked_protein = self.mask_sequence(protein_seq)
|
28 |
+
masked_peptide = self.mask_sequence(peptide_seq)
|
29 |
+
complex_seq = masked_protein + masked_peptide
|
30 |
+
|
31 |
+
complex_input = self.tokenizer(
|
32 |
+
complex_seq,
|
33 |
+
return_tensors="pt",
|
34 |
+
padding="max_length",
|
35 |
+
max_length=1024,
|
36 |
+
truncation=True,
|
37 |
+
add_special_tokens=False
|
38 |
+
)
|
39 |
+
|
40 |
+
input_ids = complex_input["input_ids"].squeeze()
|
41 |
+
attention_mask = complex_input["attention_mask"].squeeze()
|
42 |
+
|
43 |
+
label_seq = protein_seq + peptide_seq
|
44 |
+
labels = self.tokenizer(
|
45 |
+
label_seq,
|
46 |
+
return_tensors="pt",
|
47 |
+
padding="max_length",
|
48 |
+
max_length=1024,
|
49 |
+
truncation=True,
|
50 |
+
add_special_tokens=False
|
51 |
+
)["input_ids"].squeeze()
|
52 |
+
|
53 |
+
labels = torch.where(input_ids == self.tokenizer.mask_token_id, labels, -100)
|
54 |
+
|
55 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
|
56 |
+
|
57 |
+
# Callback to update mask percentage after each epoch
|
58 |
+
class DynamicMaskingCallback(TrainerCallback):
|
59 |
+
def __init__(self, dataset, increment=0.10):
|
60 |
+
self.dataset = dataset
|
61 |
+
self.increment = increment
|
62 |
+
|
63 |
+
def on_epoch_end(self, args, state, control, **kwargs):
|
64 |
+
self.dataset.mask_percentage = min(self.dataset.mask_percentage + self.increment, 1.0)
|
65 |
+
print(f"Updated mask percentage to: {self.dataset.mask_percentage * 100}%")
|
66 |
+
|
67 |
+
# Loading the dataset
|
68 |
+
file_path = "clustered_protein_pair_landscapes_l2_distances.tsv"
|
69 |
+
data = pd.read_csv(file_path, delimiter='\t')
|
70 |
+
|
71 |
+
# Splitting the data based on clusters, starting with cluster 0
|
72 |
+
test_clusters = [0] # Start with cluster 0
|
73 |
+
remaining_clusters = data[data['Cluster'] != 0]['Cluster'].unique()
|
74 |
+
random.shuffle(remaining_clusters) # Shuffle the remaining clusters
|
75 |
+
|
76 |
+
# Determine the size of cluster 0 in the dataset
|
77 |
+
cluster_0_size = (data['Cluster'] == 0).mean()
|
78 |
+
|
79 |
+
# Add more clusters until reaching approximately 20% of the dataset
|
80 |
+
test_size = cluster_0_size
|
81 |
+
for cluster in remaining_clusters:
|
82 |
+
cluster_size = (data['Cluster'] == cluster).mean()
|
83 |
+
if test_size + cluster_size > 0.20:
|
84 |
+
break
|
85 |
+
test_clusters.append(cluster)
|
86 |
+
test_size += cluster_size
|
87 |
+
|
88 |
+
# Creating test and train data based on the selected clusters
|
89 |
+
test_data = data[data['Cluster'].isin(test_clusters)]
|
90 |
+
train_data = data[~data['Cluster'].isin(test_clusters)]
|
91 |
+
|
92 |
+
proteins_train = train_data["Protein1"].tolist()
|
93 |
+
peptides_train = train_data["Protein2"].tolist()
|
94 |
+
proteins_test = test_data["Protein1"].tolist()
|
95 |
+
peptides_test = test_data["Protein2"].tolist()
|
96 |
+
|
97 |
+
# Load tokenizer and model
|
98 |
+
model_name = "esm2_t33_650M_UR50D"
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/" + model_name)
|
100 |
+
|
101 |
+
# Load model configuration and modify dropout rates
|
102 |
+
config = EsmConfig.from_pretrained("facebook/" + model_name)
|
103 |
+
# config.hidden_dropout_prob = 0.1 # Adjust hidden layer dropout
|
104 |
+
# config.attention_probs_dropout_prob = 0.1 # Adjust attention dropout
|
105 |
+
model = AutoModelForMaskedLM.from_pretrained("facebook/" + model_name, config=config)
|
106 |
+
|
107 |
+
# Generate a timestamp for the output directory
|
108 |
+
current_time = datetime.datetime.now()
|
109 |
+
timestamp = current_time.strftime("%Y%m%d_%H%M%S")
|
110 |
+
output_dir = f'./interact_output_{timestamp}/'
|
111 |
+
|
112 |
+
# Calculate the total number of training steps
|
113 |
+
num_train_epochs = 4
|
114 |
+
per_device_train_batch_size = 8
|
115 |
+
gradient_accumulation_steps = 4
|
116 |
+
total_steps = (len(proteins_train) // (per_device_train_batch_size * gradient_accumulation_steps)) * num_train_epochs
|
117 |
+
|
118 |
+
# Training arguments with cosine learning rate scheduler and gradient clipping
|
119 |
+
training_args = TrainingArguments(
|
120 |
+
output_dir=output_dir,
|
121 |
+
num_train_epochs=num_train_epochs,
|
122 |
+
per_device_train_batch_size=per_device_train_batch_size,
|
123 |
+
per_device_eval_batch_size=8,
|
124 |
+
warmup_steps=10,
|
125 |
+
logging_dir='./logs',
|
126 |
+
logging_steps=10,
|
127 |
+
evaluation_strategy="epoch",
|
128 |
+
load_best_model_at_end=True,
|
129 |
+
save_strategy='epoch',
|
130 |
+
metric_for_best_model='eval_loss',
|
131 |
+
save_total_limit=3,
|
132 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
133 |
+
lr_scheduler_type='cosine',
|
134 |
+
max_steps=total_steps, # Corrected: Added comma here
|
135 |
+
gradient_checkpointing=True, # Enable gradient checkpointing for memory optimization
|
136 |
+
max_grad_norm=1.0 # Gradient clipping
|
137 |
+
)
|
138 |
+
|
139 |
+
# Optimizer with added weight decay for regularization
|
140 |
+
optimizer = AdamW(model.parameters(), lr=0.0007984276816171436, weight_decay=0.03)
|
141 |
+
|
142 |
+
# Instantiate the ProteinDataset for training and testing
|
143 |
+
train_dataset = ProteinDataset(proteins_train, peptides_train, tokenizer)
|
144 |
+
test_dataset = ProteinDataset(proteins_test, peptides_test, tokenizer)
|
145 |
+
|
146 |
+
# Initialize DynamicMaskingCallback
|
147 |
+
dynamic_masking_callback = DynamicMaskingCallback(train_dataset)
|
148 |
+
|
149 |
+
# Trainer with callbacks for dynamic masking and gradient clipping
|
150 |
+
trainer = Trainer(
|
151 |
+
model=model,
|
152 |
+
args=training_args,
|
153 |
+
train_dataset=train_dataset,
|
154 |
+
eval_dataset=test_dataset,
|
155 |
+
optimizers=(optimizer, None),
|
156 |
+
callbacks=[dynamic_masking_callback]
|
157 |
+
)
|
158 |
+
|
159 |
+
# Start training
|
160 |
+
trainer.train()
|
config (6).json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/esm2_t33_650M_UR50D",
|
3 |
+
"architectures": [
|
4 |
+
"EsmForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"emb_layer_norm_before": false,
|
9 |
+
"esmfold_config": null,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.0,
|
12 |
+
"hidden_size": 1280,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 5120,
|
15 |
+
"is_folding_model": false,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"mask_token_id": 32,
|
18 |
+
"max_position_embeddings": 1026,
|
19 |
+
"model_type": "esm",
|
20 |
+
"num_attention_heads": 20,
|
21 |
+
"num_hidden_layers": 33,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "rotary",
|
24 |
+
"token_dropout": true,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.35.2",
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_list": null,
|
29 |
+
"vocab_size": 33
|
30 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3199082cbc493bc37c468be23a85815629423af037d1c4b502d772b3bdb5c62c
|
3 |
+
size 2609498088
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60b8758a162379c60e6fccbef2e95cd8fbb1bb183161199bf9406f1980de72d5
|
3 |
+
size 5208792737
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e09137b0c159ffe21c6157d982dbd6a08be3216152087044c92f27f2ce2e7c1b
|
3 |
+
size 14511
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb9eb38fd1861c88d0b0104df285795ad50aee4343b358077d4290d5f3f33316
|
3 |
+
size 563
|
trainer_state.json
ADDED
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.1649552583694458,
|
3 |
+
"best_model_checkpoint": "./interact_output_20231214_183743/checkpoint-912",
|
4 |
+
"epoch": 3.991247264770241,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 912,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.04,
|
13 |
+
"learning_rate": 0.0007984276816171436,
|
14 |
+
"loss": 1.8072,
|
15 |
+
"step": 10
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.09,
|
19 |
+
"learning_rate": 0.0007981855684763583,
|
20 |
+
"loss": 1.9931,
|
21 |
+
"step": 20
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.13,
|
25 |
+
"learning_rate": 0.0007974595227250475,
|
26 |
+
"loss": 2.0219,
|
27 |
+
"step": 30
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.18,
|
31 |
+
"learning_rate": 0.0007962504250201388,
|
32 |
+
"loss": 1.9413,
|
33 |
+
"step": 40
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.22,
|
37 |
+
"learning_rate": 0.000794559741936249,
|
38 |
+
"loss": 1.8684,
|
39 |
+
"step": 50
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.26,
|
43 |
+
"learning_rate": 0.0007923895241868038,
|
44 |
+
"loss": 1.7867,
|
45 |
+
"step": 60
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.31,
|
49 |
+
"learning_rate": 0.0007897424041366252,
|
50 |
+
"loss": 1.8186,
|
51 |
+
"step": 70
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.35,
|
55 |
+
"learning_rate": 0.0007866215926090057,
|
56 |
+
"loss": 1.7737,
|
57 |
+
"step": 80
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.39,
|
61 |
+
"learning_rate": 0.0007830308749911415,
|
62 |
+
"loss": 1.6727,
|
63 |
+
"step": 90
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.44,
|
67 |
+
"learning_rate": 0.0007789746066426482,
|
68 |
+
"loss": 1.6249,
|
69 |
+
"step": 100
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.48,
|
73 |
+
"learning_rate": 0.0007744577076127291,
|
74 |
+
"loss": 1.7025,
|
75 |
+
"step": 110
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.53,
|
79 |
+
"learning_rate": 0.0007694856566724036,
|
80 |
+
"loss": 1.6132,
|
81 |
+
"step": 120
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.57,
|
85 |
+
"learning_rate": 0.0007640644846690332,
|
86 |
+
"loss": 1.63,
|
87 |
+
"step": 130
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.61,
|
91 |
+
"learning_rate": 0.0007582007672112082,
|
92 |
+
"loss": 1.6888,
|
93 |
+
"step": 140
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.66,
|
97 |
+
"learning_rate": 0.0007519016166928652,
|
98 |
+
"loss": 1.6102,
|
99 |
+
"step": 150
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.7,
|
103 |
+
"learning_rate": 0.0007451746736663118,
|
104 |
+
"loss": 1.5319,
|
105 |
+
"step": 160
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.74,
|
109 |
+
"learning_rate": 0.000738028097574621,
|
110 |
+
"loss": 1.5352,
|
111 |
+
"step": 170
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.79,
|
115 |
+
"learning_rate": 0.000730470556854638,
|
116 |
+
"loss": 1.4991,
|
117 |
+
"step": 180
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.83,
|
121 |
+
"learning_rate": 0.0007225112184226035,
|
122 |
+
"loss": 1.495,
|
123 |
+
"step": 190
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.88,
|
127 |
+
"learning_rate": 0.0007141597365551446,
|
128 |
+
"loss": 1.4296,
|
129 |
+
"step": 200
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.92,
|
133 |
+
"learning_rate": 0.0007054262411791251,
|
134 |
+
"loss": 1.4373,
|
135 |
+
"step": 210
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.96,
|
139 |
+
"learning_rate": 0.0006963213255845531,
|
140 |
+
"loss": 1.4589,
|
141 |
+
"step": 220
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 1.0,
|
145 |
+
"eval_loss": 1.5730081796646118,
|
146 |
+
"eval_runtime": 181.0133,
|
147 |
+
"eval_samples_per_second": 14.883,
|
148 |
+
"eval_steps_per_second": 1.862,
|
149 |
+
"step": 228
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 1.01,
|
153 |
+
"learning_rate": 0.0006868560335754548,
|
154 |
+
"loss": 1.4361,
|
155 |
+
"step": 230
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 1.05,
|
159 |
+
"learning_rate": 0.000677041846074296,
|
160 |
+
"loss": 1.3813,
|
161 |
+
"step": 240
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 1.09,
|
165 |
+
"learning_rate": 0.000666890667196201,
|
166 |
+
"loss": 1.3511,
|
167 |
+
"step": 250
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 1.14,
|
171 |
+
"learning_rate": 0.0006564148098098617,
|
172 |
+
"loss": 1.455,
|
173 |
+
"step": 260
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 1.18,
|
177 |
+
"learning_rate": 0.0006456269806026464,
|
178 |
+
"loss": 1.4276,
|
179 |
+
"step": 270
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 1.23,
|
183 |
+
"learning_rate": 0.00063454026466803,
|
184 |
+
"loss": 1.2906,
|
185 |
+
"step": 280
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 1.27,
|
189 |
+
"learning_rate": 0.0006231681096340324,
|
190 |
+
"loss": 1.3605,
|
191 |
+
"step": 290
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 1.31,
|
195 |
+
"learning_rate": 0.0006115243093519255,
|
196 |
+
"loss": 1.3765,
|
197 |
+
"step": 300
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 1.36,
|
201 |
+
"learning_rate": 0.0005996229871649842,
|
202 |
+
"loss": 1.3846,
|
203 |
+
"step": 310
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 1.4,
|
207 |
+
"learning_rate": 0.0005874785787775835,
|
208 |
+
"loss": 1.3476,
|
209 |
+
"step": 320
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 1.44,
|
213 |
+
"learning_rate": 0.0005751058147454162,
|
214 |
+
"loss": 1.3307,
|
215 |
+
"step": 330
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 1.49,
|
219 |
+
"learning_rate": 0.0005625197026080706,
|
220 |
+
"loss": 1.3481,
|
221 |
+
"step": 340
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 1.53,
|
225 |
+
"learning_rate": 0.00054973550868564,
|
226 |
+
"loss": 1.2677,
|
227 |
+
"step": 350
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 1.58,
|
231 |
+
"learning_rate": 0.0005367687395614475,
|
232 |
+
"loss": 1.2801,
|
233 |
+
"step": 360
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 1.62,
|
237 |
+
"learning_rate": 0.0005236351232733387,
|
238 |
+
"loss": 1.2434,
|
239 |
+
"step": 370
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 1.66,
|
243 |
+
"learning_rate": 0.0005103505902363665,
|
244 |
+
"loss": 1.2472,
|
245 |
+
"step": 380
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 1.71,
|
249 |
+
"learning_rate": 0.0004969312539199984,
|
250 |
+
"loss": 1.1805,
|
251 |
+
"step": 390
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 1.75,
|
255 |
+
"learning_rate": 0.0004833933913032899,
|
256 |
+
"loss": 1.2795,
|
257 |
+
"step": 400
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 1.79,
|
261 |
+
"learning_rate": 0.0004697534231317295,
|
262 |
+
"loss": 1.1841,
|
263 |
+
"step": 410
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 1.84,
|
267 |
+
"learning_rate": 0.00045602789399970073,
|
268 |
+
"loss": 1.2189,
|
269 |
+
"step": 420
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 1.88,
|
273 |
+
"learning_rate": 0.0004422334522827224,
|
274 |
+
"loss": 1.2124,
|
275 |
+
"step": 430
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 1.93,
|
279 |
+
"learning_rate": 0.00042838682994380845,
|
280 |
+
"loss": 1.1371,
|
281 |
+
"step": 440
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 1.97,
|
285 |
+
"learning_rate": 0.00041450482223843874,
|
286 |
+
"loss": 1.1254,
|
287 |
+
"step": 450
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 2.0,
|
291 |
+
"eval_loss": 1.318668007850647,
|
292 |
+
"eval_runtime": 181.264,
|
293 |
+
"eval_samples_per_second": 14.862,
|
294 |
+
"eval_steps_per_second": 1.859,
|
295 |
+
"step": 457
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"epoch": 2.01,
|
299 |
+
"learning_rate": 0.0004006042673427602,
|
300 |
+
"loss": 1.2324,
|
301 |
+
"step": 460
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.06,
|
305 |
+
"learning_rate": 0.0003867020259297277,
|
306 |
+
"loss": 1.2353,
|
307 |
+
"step": 470
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"epoch": 2.1,
|
311 |
+
"learning_rate": 0.00037281496071795675,
|
312 |
+
"loss": 1.2029,
|
313 |
+
"step": 480
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 2.14,
|
317 |
+
"learning_rate": 0.0003589599160180951,
|
318 |
+
"loss": 1.1946,
|
319 |
+
"step": 490
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 2.19,
|
323 |
+
"learning_rate": 0.0003451536973015218,
|
324 |
+
"loss": 1.2571,
|
325 |
+
"step": 500
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 2.23,
|
329 |
+
"learning_rate": 0.0003314130508161583,
|
330 |
+
"loss": 1.1964,
|
331 |
+
"step": 510
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.28,
|
335 |
+
"learning_rate": 0.0003177546432741117,
|
336 |
+
"loss": 1.2171,
|
337 |
+
"step": 520
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"epoch": 2.32,
|
341 |
+
"learning_rate": 0.00030419504163579317,
|
342 |
+
"loss": 1.1815,
|
343 |
+
"step": 530
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"epoch": 2.36,
|
347 |
+
"learning_rate": 0.00029075069301502925,
|
348 |
+
"loss": 1.1589,
|
349 |
+
"step": 540
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 2.41,
|
353 |
+
"learning_rate": 0.000277437904729541,
|
354 |
+
"loss": 1.1154,
|
355 |
+
"step": 550
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 2.45,
|
359 |
+
"learning_rate": 0.0002642728245209895,
|
360 |
+
"loss": 1.1195,
|
361 |
+
"step": 560
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 2.49,
|
365 |
+
"learning_rate": 0.0002512714209685778,
|
366 |
+
"loss": 1.1485,
|
367 |
+
"step": 570
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 2.54,
|
371 |
+
"learning_rate": 0.00023844946411996905,
|
372 |
+
"loss": 1.1151,
|
373 |
+
"step": 580
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 2.58,
|
377 |
+
"learning_rate": 0.0002258225063630134,
|
378 |
+
"loss": 1.1342,
|
379 |
+
"step": 590
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"epoch": 2.63,
|
383 |
+
"learning_rate": 0.00021340586356148388,
|
384 |
+
"loss": 1.1106,
|
385 |
+
"step": 600
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 2.67,
|
389 |
+
"learning_rate": 0.0002012145964777057,
|
390 |
+
"loss": 1.0693,
|
391 |
+
"step": 610
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 2.71,
|
395 |
+
"learning_rate": 0.00018926349250461,
|
396 |
+
"loss": 1.1118,
|
397 |
+
"step": 620
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 2.76,
|
401 |
+
"learning_rate": 0.00017756704772937113,
|
402 |
+
"loss": 1.097,
|
403 |
+
"step": 630
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 2.8,
|
407 |
+
"learning_rate": 0.00016613944935038317,
|
408 |
+
"loss": 1.0072,
|
409 |
+
"step": 640
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 2.84,
|
413 |
+
"learning_rate": 0.000154994558468902,
|
414 |
+
"loss": 1.0244,
|
415 |
+
"step": 650
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 2.89,
|
419 |
+
"learning_rate": 0.0001441458932762289,
|
420 |
+
"loss": 1.0308,
|
421 |
+
"step": 660
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 2.93,
|
425 |
+
"learning_rate": 0.00013360661265682426,
|
426 |
+
"loss": 0.9882,
|
427 |
+
"step": 670
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"epoch": 2.98,
|
431 |
+
"learning_rate": 0.00012338950022724405,
|
432 |
+
"loss": 0.9938,
|
433 |
+
"step": 680
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 3.0,
|
437 |
+
"eval_loss": 1.1857038736343384,
|
438 |
+
"eval_runtime": 181.1024,
|
439 |
+
"eval_samples_per_second": 14.876,
|
440 |
+
"eval_steps_per_second": 1.861,
|
441 |
+
"step": 685
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 3.02,
|
445 |
+
"learning_rate": 0.00011350694883025702,
|
446 |
+
"loss": 1.0906,
|
447 |
+
"step": 690
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 3.06,
|
451 |
+
"learning_rate": 0.00010397094550294988,
|
452 |
+
"loss": 1.1792,
|
453 |
+
"step": 700
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 3.11,
|
457 |
+
"learning_rate": 9.4793056937056e-05,
|
458 |
+
"loss": 1.0951,
|
459 |
+
"step": 710
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 3.15,
|
463 |
+
"learning_rate": 8.598441544914002e-05,
|
464 |
+
"loss": 1.1168,
|
465 |
+
"step": 720
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 3.19,
|
469 |
+
"learning_rate": 7.755570547765905e-05,
|
470 |
+
"loss": 1.0971,
|
471 |
+
"step": 730
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 3.24,
|
475 |
+
"learning_rate": 6.951715062327716e-05,
|
476 |
+
"loss": 1.0359,
|
477 |
+
"step": 740
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 3.28,
|
481 |
+
"learning_rate": 6.187850124815228e-05,
|
482 |
+
"loss": 1.077,
|
483 |
+
"step": 750
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 3.33,
|
487 |
+
"learning_rate": 5.4649022649238026e-05,
|
488 |
+
"loss": 1.0996,
|
489 |
+
"step": 760
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 3.37,
|
493 |
+
"learning_rate": 4.783748381994562e-05,
|
494 |
+
"loss": 1.0043,
|
495 |
+
"step": 770
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 3.41,
|
499 |
+
"learning_rate": 4.145214681379591e-05,
|
500 |
+
"loss": 1.1422,
|
501 |
+
"step": 780
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 3.46,
|
505 |
+
"learning_rate": 3.550075672296503e-05,
|
506 |
+
"loss": 1.1366,
|
507 |
+
"step": 790
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 3.5,
|
511 |
+
"learning_rate": 2.9990532283877747e-05,
|
512 |
+
"loss": 1.0587,
|
513 |
+
"step": 800
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 3.54,
|
517 |
+
"learning_rate": 2.492815712124332e-05,
|
518 |
+
"loss": 1.1301,
|
519 |
+
"step": 810
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 3.59,
|
523 |
+
"learning_rate": 2.0319771641155883e-05,
|
524 |
+
"loss": 1.0567,
|
525 |
+
"step": 820
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 3.63,
|
529 |
+
"learning_rate": 1.617096558309071e-05,
|
530 |
+
"loss": 1.1119,
|
531 |
+
"step": 830
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 3.68,
|
535 |
+
"learning_rate": 1.2486771239831942e-05,
|
536 |
+
"loss": 1.1186,
|
537 |
+
"step": 840
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 3.72,
|
541 |
+
"learning_rate": 9.271657353555046e-06,
|
542 |
+
"loss": 1.0765,
|
543 |
+
"step": 850
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 3.76,
|
547 |
+
"learning_rate": 6.529523695467422e-06,
|
548 |
+
"loss": 1.0678,
|
549 |
+
"step": 860
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 3.81,
|
553 |
+
"learning_rate": 4.263696335582372e-06,
|
554 |
+
"loss": 1.1022,
|
555 |
+
"step": 870
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 3.85,
|
559 |
+
"learning_rate": 2.476923608363819e-06,
|
560 |
+
"loss": 1.0498,
|
561 |
+
"step": 880
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 3.89,
|
565 |
+
"learning_rate": 1.1713727791349433e-06,
|
566 |
+
"loss": 1.0907,
|
567 |
+
"step": 890
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 3.94,
|
571 |
+
"learning_rate": 3.4862741529444126e-07,
|
572 |
+
"loss": 1.0615,
|
573 |
+
"step": 900
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 3.98,
|
577 |
+
"learning_rate": 9.685465529235211e-09,
|
578 |
+
"loss": 1.0461,
|
579 |
+
"step": 910
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 3.99,
|
583 |
+
"eval_loss": 1.1649552583694458,
|
584 |
+
"eval_runtime": 181.1967,
|
585 |
+
"eval_samples_per_second": 14.868,
|
586 |
+
"eval_steps_per_second": 1.86,
|
587 |
+
"step": 912
|
588 |
+
}
|
589 |
+
],
|
590 |
+
"logging_steps": 10,
|
591 |
+
"max_steps": 912,
|
592 |
+
"num_train_epochs": 4,
|
593 |
+
"save_steps": 500,
|
594 |
+
"total_flos": 1.1665671520864666e+17,
|
595 |
+
"trial_name": null,
|
596 |
+
"trial_params": null
|
597 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cdaa6b6ca3d18933180a2b04e43e87f74d8e989f6fe9c9b5d31fdeba7acadaa1
|
3 |
+
size 4091
|