File size: 7,451 Bytes
55253c9 1f351d9 55253c9 1f351d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
license: apache-2.0
language:
- en
---
![](assets/logo.png)
# Fast Segment Anything
[[`Paper`](https://arxiv.org/pdf/2306.12156.pdf)] [[`Web Demo`](https://huggingface.co/spaces/An-619/FastSAM)] [[`Colab demo`](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)] [[`Model Zoo`](#model-checkpoints)] [[`BibTeX`](#citing-fastsam)]
![FastSAM Speed](assets/head_fig.png)
The **Fast Segment Anything Model(FastSAM)** is a CNN Segment Anything Model trained by only 2% of the SA-1B dataset published by SAM authors. The FastSAM achieve a comparable performance with
the SAM method at **50× higher run-time speed**.
![FastSAM design](assets/Overview.png)
## Installation
Clone the repository locally:
```
git clone https://github.com/CASIA-IVA-Lab/FastSAM.git
```
Create the conda env. The code requires `python>=3.7`, as well as `pytorch>=1.7` and `torchvision>=0.8`. Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended.
```
conda create -n FastSAM python=3.9
conda activate FastSAM
```
Install the packages:
```
cd FastSAM
pip install -r requirements.txt
```
Install clip:
```
pip install git+https://github.com/openai/CLIP.git
```
## <a name="GettingStarted"></a> Getting Started
First download a [model checkpoint](#model-checkpoints).
Then, you can run the scripts to try the everything mode and three prompt modes.
```
# Everything mode
python Inference.py --model_path ./weights/FastSAM.pt --img_path ./images/dogs.jpg
```
```
# text prompt
python Inference.py --model_path ./weights/FastSAM.pt --img_path ./images/dogs.jpg --text_prompt "the yellow dog"
```
```
# box prompt
python Inference.py --model_path ./weights/FastSAM.pt --img_path ./images/dogs.jpg --box_prompt [570,200,230,400]
```
```
# points prompt
python Inference.py --model_path ./weights/FastSAM.pt --img_path ./images/dogs.jpg --point_prompt "[[520,360],[620,300]]" --point_label "[1,0]"
```
You are also welcomed to try our Colab demo: [FastSAM_example.ipynb](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing).
## Different Inference Options
We provide various options for different purposes, details are in [MORE_USAGES.md](MORE_USAGES.md).
## Web demo
In the [web demo](https://huggingface.co/spaces/An-619/FastSAM), you can upload your own image, select input size from 512~1024, and choose whether to visualize in high quality. High quality visualization additionally shows more easily observable split edges. The web demo only supports Everything Mode now, other modes will try to support in the future.
<!-- The [web demo](https://huggingface.co/spaces/An-619/FastSAM) can process your custom image using the Everything mode. -->
![Web Demo](assets/web_demo.png)
## <a name="Models"></a>Model Checkpoints
Two model versions of the model are available with different sizes. Click the links below to download the checkpoint for the corresponding model type.
- **`default` or `FastSAM`: [YOLOv8x based Segment Anything Model.](https://drive.google.com/file/d/1m1sjY4ihXBU1fZXdQ-Xdj-mDltW-2Rqv/view?usp=sharing)**
- `FastSAM-s`: [YOLOv8s based Segment Anything Model.](https://drive.google.com/file/d/10XmSj6mmpmRb8NhXbtiuO9cTTBwR_9SV/view?usp=sharing)
## Results
All result were tested on a single NVIDIA GeForce RTX 3090.
### 1. Inference time
Running Speed under Different Point Prompt Numbers(ms).
| method | params | 1 | 10 | 100 | E(16x16) | E(32x32*) | E(64x64) |
|:------------------:|:--------:|:-----:|:-----:|:-----:|:----------:|:-----------:|:----------:|
| SAM-H | 0.6G | 446 | 464 | 627 | 852 | 2099 | 6972 |
| SAM-B | 136M | 110 | 125 | 230 | 432 | 1383 | 5417 |
| FastSAM | 68M | 40 |40 | 40 | 40 | 40 | 40 |
### 2. Memory usage
| Dataset | Method | GPU Memory (MB) |
|:-----------:|:-----------------:|:-----------------------:|
| COCO 2017 | FastSAM | 2608 |
| COCO 2017 | SAM-H | 7060 |
| COCO 2017 | SAM-B | 4670 |
### 3. Zero-shot Transfer Experiments
#### Edge Detection
Test on the BSDB500 dataset.
|method | year| ODS | OIS | AP | R50 |
|:----------:|:-------:|:--------:|:--------:|:------:|:-----:|
| HED | 2015| .788 | .808 | .840 | .923 |
| SAM | 2023| .768 | .786 | .794 | .928 |
| FastSAM | 2023| .750 | .790 | .793 | .903 |
#### Object Proposals
##### COCO
|method | AR10 | AR100 | AR1000 | AUC |
|:---------------------------:|:------:|:-------:|--------:|:------:|
| SAM-H E64 | 15.5 | 45.6 | 67.7 | 32.1 |
| SAM-H E32 | 18.5 | 49.5 | 62.5 | 33.7 |
| SAM-B E32 | 11.4 | 39.6 | 59.1 | 27.3 |
| FastSAM | 15.7 | 47.3 | 63.7 | 32.2 |
##### LVIS
bbox AR@1000
| method | all | small | med. | large |
|:---------------:|:-----:|:------:|:-----:|:------:|
| ViTDet-H | 65.0 | 53.2 | 83.3 | 91.2 |
zero-shot transfer methods
| SAM-H E64 | 52.1 | 36.6 | 75.1 | 88.2 |
| SAM-H E32 | 50.3 | 33.1 | 76.2 | 89.8 |
| SAM-B E32 | 45.0 | 29.3 | 68.7 | 80.6 |
| FastSAM | 57.1 | 44.3 | 77.1 | 85.3 |
#### Instance Segmentation On COCO 2017
|method | AP | APS | APM | APL |
|:--------------:|:--------:|:--------:|:------:|:-----:|
| ViTDet-H | .510 | .320 | .543 | .689 |
| SAM | .465 | .308 | .510 | .617 |
| FastSAM | .379 | .239 | .434 | .500 |
### 4. Performance Visulization
Several segmentation results:
#### Natural Images
![Natural Images](assets/eightpic.png)
#### Text to Mask
![Text to Mask](assets/dog_clip.png)
### 5.Downstream tasks
The results of several downstream tasks to show the effectiveness.
#### Anomaly Detection
![Anomaly Detection](assets/anomaly.png)
#### Salient Object Detection
![Salient Object Detection](assets/salient.png)
#### Building Extracting
![Building Detection](assets/building.png)
## License
The model is licensed under the [Apache 2.0 license](LICENSE).
## Acknowledgement
- [Segment Anything](https://segment-anything.com/) provides the SA-1B dataset and the base codes.
- [YOLOv8](https://github.com/ultralytics/ultralytics) provides codes and pre-trained models.
- [YOLACT](https://arxiv.org/abs/2112.10003) provides powerful instance segmentation method.
- [Grounded-Segment-Anything](https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything) provides a useful web demo template.
## Citing FastSAM
If you find this project useful for your research, please consider citing the following BibTeX entry.
```
@misc{zhao2023fast,
title={Fast Segment Anything},
author={Xu Zhao and Wenchao Ding and Yongqi An and Yinglong Du and Tao Yu and Min Li and Ming Tang and Jinqiao Wang},
year={2023},
eprint={2306.12156},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!-- <p align="center">
<a href="https://star-history.com/#geekyutao/Inpaint-Anything&Date">
<img src="https://api.star-history.com/svg?repos=geekyutao/Inpaint-Anything&type=Date" alt="Star History Chart">
</a>
</p> -->
|