File size: 1,772 Bytes
2a24fd5
 
 
 
 
a2bc315
2a24fd5
 
 
 
 
 
a2bc315
2a24fd5
 
 
b0a60c6
 
 
2a24fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355c49c
 
a2bc315
3702fb4
0a80dc6
2e9ac70
d6c0822
3501870
7997684
b0a60c6
2a24fd5
 
 
 
 
 
 
2cbf315
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: AnaniyaX/decision-distilbert-uncased
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# AnaniyaX/decision-distilbert-uncased

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0149
- Train Accuracy: 0.9960
- Epoch: 7

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-06, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Epoch |
|:----------:|:--------------:|:-----:|
| 0.1914     | 0.9444         | 0     |
| 0.0711     | 0.9768         | 1     |
| 0.0531     | 0.9826         | 2     |
| 0.0427     | 0.9868         | 3     |
| 0.0330     | 0.9904         | 4     |
| 0.0264     | 0.9923         | 5     |
| 0.0195     | 0.9947         | 6     |
| 0.0149     | 0.9960         | 7     |


### Framework versions

- Transformers 4.27.2
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2