File size: 3,163 Bytes
f79b38b 68726c8 f79b38b 68726c8 f79b38b 68726c8 f79b38b 68726c8 f79b38b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - DE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1476
- Wer: 0.1612
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 2.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.1842 | 0.07 | 1000 | 0.4461 | 0.4918 |
| 1.1317 | 0.15 | 2000 | 0.2669 | 0.2748 |
| 1.1029 | 0.22 | 3000 | 0.2638 | 0.2706 |
| 1.0949 | 0.29 | 4000 | 0.2519 | 0.2627 |
| 1.0923 | 0.37 | 5000 | 0.2475 | 0.2577 |
| 1.0847 | 0.44 | 6000 | 0.2436 | 0.2612 |
| 1.0667 | 0.51 | 7000 | 0.2472 | 0.2661 |
| 1.0709 | 0.59 | 8000 | 0.2489 | 0.2610 |
| 1.0472 | 0.66 | 9000 | 0.2354 | 0.2500 |
| 1.0604 | 0.73 | 10000 | 0.2346 | 0.2485 |
| 1.0375 | 0.81 | 11000 | 0.2286 | 0.2390 |
| 1.0193 | 0.88 | 12000 | 0.2212 | 0.2338 |
| 1.0077 | 0.95 | 13000 | 0.2152 | 0.2269 |
| 1.0004 | 1.03 | 14000 | 0.2093 | 0.2207 |
| 0.9649 | 1.1 | 15000 | 0.1993 | 0.2113 |
| 0.9509 | 1.17 | 16000 | 0.1934 | 0.2089 |
| 0.9533 | 1.25 | 17000 | 0.1874 | 0.2023 |
| 0.9248 | 1.32 | 18000 | 0.1818 | 0.1974 |
| 0.9216 | 1.39 | 19000 | 0.1776 | 0.1926 |
| 0.8964 | 1.47 | 20000 | 0.1722 | 0.1904 |
| 0.8941 | 1.54 | 21000 | 0.1690 | 0.1852 |
| 0.871 | 1.61 | 22000 | 0.1627 | 0.1781 |
| 0.847 | 1.69 | 23000 | 0.1591 | 0.1751 |
| 0.822 | 1.76 | 24000 | 0.1551 | 0.1701 |
| 0.8188 | 1.83 | 25000 | 0.1528 | 0.1667 |
| 0.8305 | 1.91 | 26000 | 0.1492 | 0.1631 |
| 0.8122 | 1.98 | 27000 | 0.1479 | 0.1611 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|