File size: 3,163 Bytes
f79b38b
68726c8
 
f79b38b
 
68726c8
 
f79b38b
 
 
 
 
 
 
 
 
 
 
 
 
68726c8
f79b38b
68726c8
 
f79b38b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
language:
- de
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - DE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1476
- Wer: 0.1612

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 2.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.1842        | 0.07  | 1000  | 0.4461          | 0.4918 |
| 1.1317        | 0.15  | 2000  | 0.2669          | 0.2748 |
| 1.1029        | 0.22  | 3000  | 0.2638          | 0.2706 |
| 1.0949        | 0.29  | 4000  | 0.2519          | 0.2627 |
| 1.0923        | 0.37  | 5000  | 0.2475          | 0.2577 |
| 1.0847        | 0.44  | 6000  | 0.2436          | 0.2612 |
| 1.0667        | 0.51  | 7000  | 0.2472          | 0.2661 |
| 1.0709        | 0.59  | 8000  | 0.2489          | 0.2610 |
| 1.0472        | 0.66  | 9000  | 0.2354          | 0.2500 |
| 1.0604        | 0.73  | 10000 | 0.2346          | 0.2485 |
| 1.0375        | 0.81  | 11000 | 0.2286          | 0.2390 |
| 1.0193        | 0.88  | 12000 | 0.2212          | 0.2338 |
| 1.0077        | 0.95  | 13000 | 0.2152          | 0.2269 |
| 1.0004        | 1.03  | 14000 | 0.2093          | 0.2207 |
| 0.9649        | 1.1   | 15000 | 0.1993          | 0.2113 |
| 0.9509        | 1.17  | 16000 | 0.1934          | 0.2089 |
| 0.9533        | 1.25  | 17000 | 0.1874          | 0.2023 |
| 0.9248        | 1.32  | 18000 | 0.1818          | 0.1974 |
| 0.9216        | 1.39  | 19000 | 0.1776          | 0.1926 |
| 0.8964        | 1.47  | 20000 | 0.1722          | 0.1904 |
| 0.8941        | 1.54  | 21000 | 0.1690          | 0.1852 |
| 0.871         | 1.61  | 22000 | 0.1627          | 0.1781 |
| 0.847         | 1.69  | 23000 | 0.1591          | 0.1751 |
| 0.822         | 1.76  | 24000 | 0.1551          | 0.1701 |
| 0.8188        | 1.83  | 25000 | 0.1528          | 0.1667 |
| 0.8305        | 1.91  | 26000 | 0.1492          | 0.1631 |
| 0.8122        | 1.98  | 27000 | 0.1479          | 0.1611 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0