AndrewMcDowell
commited on
Commit
•
802dee6
1
Parent(s):
5262dde
Training in progress, step 1000
Browse files- .ipynb_checkpoints/run_speech_recognition_ctc-checkpoint.py +754 -0
- .ipynb_checkpoints/run_training-checkpoint.sh +2 -1
- .ipynb_checkpoints/special_tokens_map-checkpoint.json +1 -0
- .ipynb_checkpoints/vocab-checkpoint.json +1 -0
- added_tokens.json +1 -1
- config.json +2 -2
- pytorch_model.bin +2 -2
- run_speech_recognition_ctc.py +18 -1
- run_training.sh +2 -1
- special_tokens_map.json +1 -1
- trainer_state.json +0 -1900
- training_args.bin +1 -1
- vocab.json +1 -1
.ipynb_checkpoints/run_speech_recognition_ctc-checkpoint.py
ADDED
@@ -0,0 +1,754 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers import (
|
35 |
+
AutoConfig,
|
36 |
+
AutoFeatureExtractor,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoProcessor,
|
39 |
+
AutoTokenizer,
|
40 |
+
HfArgumentParser,
|
41 |
+
Trainer,
|
42 |
+
TrainingArguments,
|
43 |
+
Wav2Vec2Processor,
|
44 |
+
set_seed,
|
45 |
+
)
|
46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
47 |
+
from transformers.utils import check_min_version
|
48 |
+
from transformers.utils.versions import require_version
|
49 |
+
|
50 |
+
|
51 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
52 |
+
check_min_version("4.16.0.dev0")
|
53 |
+
|
54 |
+
require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.getLogger(__name__)
|
58 |
+
|
59 |
+
|
60 |
+
def list_field(default=None, metadata=None):
|
61 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
62 |
+
|
63 |
+
|
64 |
+
@dataclass
|
65 |
+
class ModelArguments:
|
66 |
+
"""
|
67 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
68 |
+
"""
|
69 |
+
|
70 |
+
model_name_or_path: str = field(
|
71 |
+
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
72 |
+
)
|
73 |
+
tokenizer_name_or_path: Optional[str] = field(
|
74 |
+
default=None,
|
75 |
+
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
76 |
+
)
|
77 |
+
cache_dir: Optional[str] = field(
|
78 |
+
default=None,
|
79 |
+
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
80 |
+
)
|
81 |
+
freeze_feature_encoder: bool = field(
|
82 |
+
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
83 |
+
)
|
84 |
+
attention_dropout: float = field(
|
85 |
+
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
86 |
+
)
|
87 |
+
activation_dropout: float = field(
|
88 |
+
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
89 |
+
)
|
90 |
+
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
91 |
+
hidden_dropout: float = field(
|
92 |
+
default=0.0,
|
93 |
+
metadata={
|
94 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
95 |
+
},
|
96 |
+
)
|
97 |
+
final_dropout: float = field(
|
98 |
+
default=0.0,
|
99 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
100 |
+
)
|
101 |
+
mask_time_prob: float = field(
|
102 |
+
default=0.05,
|
103 |
+
metadata={
|
104 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
105 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
106 |
+
"vectors will be masked along the time axis."
|
107 |
+
},
|
108 |
+
)
|
109 |
+
mask_time_length: int = field(
|
110 |
+
default=10,
|
111 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
112 |
+
)
|
113 |
+
mask_feature_prob: float = field(
|
114 |
+
default=0.0,
|
115 |
+
metadata={
|
116 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
117 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
118 |
+
},
|
119 |
+
)
|
120 |
+
mask_feature_length: int = field(
|
121 |
+
default=10,
|
122 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
123 |
+
)
|
124 |
+
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
125 |
+
ctc_loss_reduction: Optional[str] = field(
|
126 |
+
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
@dataclass
|
131 |
+
class DataTrainingArguments:
|
132 |
+
"""
|
133 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
134 |
+
|
135 |
+
Using `HfArgumentParser` we can turn this class
|
136 |
+
into argparse arguments to be able to specify them on
|
137 |
+
the command line.
|
138 |
+
"""
|
139 |
+
|
140 |
+
dataset_name: str = field(
|
141 |
+
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
142 |
+
)
|
143 |
+
dataset_config_name: str = field(
|
144 |
+
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
145 |
+
)
|
146 |
+
train_split_name: str = field(
|
147 |
+
default="train+validation",
|
148 |
+
metadata={
|
149 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
150 |
+
},
|
151 |
+
)
|
152 |
+
eval_split_name: str = field(
|
153 |
+
default="test",
|
154 |
+
metadata={
|
155 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
156 |
+
},
|
157 |
+
)
|
158 |
+
audio_column_name: str = field(
|
159 |
+
default="audio",
|
160 |
+
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
161 |
+
)
|
162 |
+
text_column_name: str = field(
|
163 |
+
default="text",
|
164 |
+
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
165 |
+
)
|
166 |
+
overwrite_cache: bool = field(
|
167 |
+
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
168 |
+
)
|
169 |
+
preprocessing_num_workers: Optional[int] = field(
|
170 |
+
default=None,
|
171 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
172 |
+
)
|
173 |
+
max_train_samples: Optional[int] = field(
|
174 |
+
default=None,
|
175 |
+
metadata={
|
176 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
177 |
+
"value if set."
|
178 |
+
},
|
179 |
+
)
|
180 |
+
max_eval_samples: Optional[int] = field(
|
181 |
+
default=None,
|
182 |
+
metadata={
|
183 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
184 |
+
"value if set."
|
185 |
+
},
|
186 |
+
)
|
187 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
188 |
+
default=None,
|
189 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
190 |
+
)
|
191 |
+
eval_metrics: List[str] = list_field(
|
192 |
+
default=["wer"],
|
193 |
+
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
194 |
+
)
|
195 |
+
max_duration_in_seconds: float = field(
|
196 |
+
default=20.0,
|
197 |
+
metadata={
|
198 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
199 |
+
},
|
200 |
+
)
|
201 |
+
min_duration_in_seconds: float = field(
|
202 |
+
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
203 |
+
)
|
204 |
+
preprocessing_only: bool = field(
|
205 |
+
default=False,
|
206 |
+
metadata={
|
207 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
208 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
209 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
210 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
211 |
+
},
|
212 |
+
)
|
213 |
+
use_auth_token: bool = field(
|
214 |
+
default=False,
|
215 |
+
metadata={
|
216 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
217 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
218 |
+
},
|
219 |
+
)
|
220 |
+
unk_token: str = field(
|
221 |
+
default="[UNK]",
|
222 |
+
metadata={"help": "The unk token for the tokenizer"},
|
223 |
+
)
|
224 |
+
pad_token: str = field(
|
225 |
+
default="[PAD]",
|
226 |
+
metadata={"help": "The padding token for the tokenizer"},
|
227 |
+
)
|
228 |
+
word_delimiter_token: str = field(
|
229 |
+
default="|",
|
230 |
+
metadata={"help": "The word delimiter token for the tokenizer"},
|
231 |
+
)
|
232 |
+
phoneme_language: Optional[str] = field(
|
233 |
+
default=None,
|
234 |
+
metadata={
|
235 |
+
"help": "The target language that should be used be"
|
236 |
+
" passed to the tokenizer for tokenization. Note that"
|
237 |
+
" this is only relevant if the model classifies the"
|
238 |
+
" input audio to a sequence of phoneme sequences."
|
239 |
+
},
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
@dataclass
|
244 |
+
class DataCollatorCTCWithPadding:
|
245 |
+
"""
|
246 |
+
Data collator that will dynamically pad the inputs received.
|
247 |
+
Args:
|
248 |
+
processor (:class:`~transformers.AutoProcessor`)
|
249 |
+
The processor used for proccessing the data.
|
250 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
251 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
252 |
+
among:
|
253 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
254 |
+
sequence if provided).
|
255 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
256 |
+
maximum acceptable input length for the model if that argument is not provided.
|
257 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
258 |
+
different lengths).
|
259 |
+
max_length (:obj:`int`, `optional`):
|
260 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
261 |
+
max_length_labels (:obj:`int`, `optional`):
|
262 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
263 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
264 |
+
If set will pad the sequence to a multiple of the provided value.
|
265 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
266 |
+
7.5 (Volta).
|
267 |
+
"""
|
268 |
+
|
269 |
+
processor: AutoProcessor
|
270 |
+
padding: Union[bool, str] = "longest"
|
271 |
+
pad_to_multiple_of: Optional[int] = None
|
272 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
273 |
+
|
274 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
275 |
+
# split inputs and labels since they have to be of different lenghts and need
|
276 |
+
# different padding methods
|
277 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
278 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
279 |
+
|
280 |
+
batch = self.processor.pad(
|
281 |
+
input_features,
|
282 |
+
padding=self.padding,
|
283 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
284 |
+
return_tensors="pt",
|
285 |
+
)
|
286 |
+
|
287 |
+
with self.processor.as_target_processor():
|
288 |
+
labels_batch = self.processor.pad(
|
289 |
+
label_features,
|
290 |
+
padding=self.padding,
|
291 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
292 |
+
return_tensors="pt",
|
293 |
+
)
|
294 |
+
|
295 |
+
# replace padding with -100 to ignore loss correctly
|
296 |
+
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
297 |
+
|
298 |
+
batch["labels"] = labels
|
299 |
+
|
300 |
+
return batch
|
301 |
+
|
302 |
+
|
303 |
+
def create_vocabulary_from_data(
|
304 |
+
datasets: DatasetDict,
|
305 |
+
word_delimiter_token: Optional[str] = None,
|
306 |
+
unk_token: Optional[str] = None,
|
307 |
+
pad_token: Optional[str] = None,
|
308 |
+
):
|
309 |
+
# Given training and test labels create vocabulary
|
310 |
+
def extract_all_chars(batch):
|
311 |
+
all_text = " ".join(batch["target_text"])
|
312 |
+
vocab = list(set(all_text))
|
313 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
314 |
+
|
315 |
+
vocabs = datasets.map(
|
316 |
+
extract_all_chars,
|
317 |
+
batched=True,
|
318 |
+
batch_size=-1,
|
319 |
+
keep_in_memory=True,
|
320 |
+
remove_columns=datasets["train"].column_names,
|
321 |
+
load_from_cache_file=False
|
322 |
+
)
|
323 |
+
|
324 |
+
# take union of all unique characters in each dataset
|
325 |
+
vocab_set = functools.reduce(
|
326 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
327 |
+
)
|
328 |
+
|
329 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
330 |
+
|
331 |
+
# replace white space with delimiter token
|
332 |
+
if word_delimiter_token is not None:
|
333 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
334 |
+
del vocab_dict[" "]
|
335 |
+
|
336 |
+
# add unk and pad token
|
337 |
+
if unk_token is not None:
|
338 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
339 |
+
|
340 |
+
if pad_token is not None:
|
341 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
342 |
+
|
343 |
+
return vocab_dict
|
344 |
+
|
345 |
+
|
346 |
+
def main():
|
347 |
+
# See all possible arguments in src/transformers/training_args.py
|
348 |
+
# or by passing the --help flag to this script.
|
349 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
350 |
+
|
351 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
352 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
353 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
354 |
+
# let's parse it to get our arguments.
|
355 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
356 |
+
else:
|
357 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
358 |
+
|
359 |
+
# Detecting last checkpoint.
|
360 |
+
last_checkpoint = None
|
361 |
+
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
362 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
363 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
364 |
+
raise ValueError(
|
365 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
366 |
+
"Use --overwrite_output_dir to overcome."
|
367 |
+
)
|
368 |
+
elif last_checkpoint is not None:
|
369 |
+
logger.info(
|
370 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
371 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
372 |
+
)
|
373 |
+
|
374 |
+
# Setup logging
|
375 |
+
logging.basicConfig(
|
376 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
377 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
378 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
379 |
+
)
|
380 |
+
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
381 |
+
|
382 |
+
# Log on each process the small summary:
|
383 |
+
logger.warning(
|
384 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
385 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
386 |
+
)
|
387 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
388 |
+
if is_main_process(training_args.local_rank):
|
389 |
+
transformers.utils.logging.set_verbosity_info()
|
390 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
391 |
+
|
392 |
+
# Set seed before initializing model.
|
393 |
+
set_seed(training_args.seed)
|
394 |
+
|
395 |
+
# 1. First, let's load the dataset
|
396 |
+
raw_datasets = DatasetDict()
|
397 |
+
|
398 |
+
if training_args.do_train:
|
399 |
+
raw_datasets["train"] = load_dataset(
|
400 |
+
data_args.dataset_name,
|
401 |
+
data_args.dataset_config_name,
|
402 |
+
split=data_args.train_split_name,
|
403 |
+
use_auth_token=data_args.use_auth_token,
|
404 |
+
)
|
405 |
+
|
406 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
407 |
+
raise ValueError(
|
408 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
409 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
410 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
411 |
+
)
|
412 |
+
|
413 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
414 |
+
raise ValueError(
|
415 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
416 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
417 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
418 |
+
)
|
419 |
+
|
420 |
+
if data_args.max_train_samples is not None:
|
421 |
+
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
422 |
+
|
423 |
+
if training_args.do_eval:
|
424 |
+
raw_datasets["eval"] = load_dataset(
|
425 |
+
data_args.dataset_name,
|
426 |
+
data_args.dataset_config_name,
|
427 |
+
split=data_args.eval_split_name,
|
428 |
+
use_auth_token=data_args.use_auth_token,
|
429 |
+
)
|
430 |
+
|
431 |
+
if data_args.max_eval_samples is not None:
|
432 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
433 |
+
|
434 |
+
# 2. We remove some special characters from the datasets
|
435 |
+
# that make training complicated and do not help in transcribing the speech
|
436 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
437 |
+
# that could be easily picked up by the model
|
438 |
+
odd_chars_regex_string = '$&()*+.\/=@\[\]_`¡§«°´µ·»×àáâãåæçèéêëìíîïðñòóôõøùúûýþāăąćčďđēėęěğġħīıłńņňōŏőœřśşšťūůźżžơǐǔșțəʻʾʿ̥̆̇авеикморсфчшѹאבנעש་ནḫṟṣṭạảắằếễệọồộụứ‑‚„‟′″‹›→−≡⟨⟩カ东临乡关合城孙尣幺支比毛泽無生臣辶道镇黃'
|
439 |
+
|
440 |
+
chars_to_ignore_regex = (
|
441 |
+
f'[{"".join(data_args.chars_to_ignore)+ odd_chars_regex_string}]' if data_args.chars_to_ignore is not None else None
|
442 |
+
)
|
443 |
+
text_column_name = data_args.text_column_name
|
444 |
+
|
445 |
+
def remove_special_characters(batch):
|
446 |
+
if chars_to_ignore_regex is not None:
|
447 |
+
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
448 |
+
else:
|
449 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
450 |
+
return batch
|
451 |
+
|
452 |
+
with training_args.main_process_first(desc="dataset map special characters removal"):
|
453 |
+
raw_datasets = raw_datasets.map(
|
454 |
+
remove_special_characters,
|
455 |
+
remove_columns=[text_column_name],
|
456 |
+
desc="remove special characters from datasets",
|
457 |
+
load_from_cache_file=False
|
458 |
+
)
|
459 |
+
|
460 |
+
# save special tokens for tokenizer
|
461 |
+
word_delimiter_token = data_args.word_delimiter_token
|
462 |
+
unk_token = data_args.unk_token
|
463 |
+
pad_token = data_args.pad_token
|
464 |
+
|
465 |
+
# 3. Next, let's load the config as we might need it to create
|
466 |
+
# the tokenizer
|
467 |
+
# load config
|
468 |
+
config = AutoConfig.from_pretrained(
|
469 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
470 |
+
)
|
471 |
+
|
472 |
+
# 4. Next, if no tokenizer file is defined,
|
473 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
474 |
+
# the training and evaluation datasets
|
475 |
+
# We need to make sure that only first rank saves vocabulary
|
476 |
+
# make sure all processes wait until vocab is created
|
477 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
478 |
+
tokenizer_kwargs = {}
|
479 |
+
if tokenizer_name_or_path is None:
|
480 |
+
# save vocab in training output dir
|
481 |
+
tokenizer_name_or_path = training_args.output_dir
|
482 |
+
|
483 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
484 |
+
|
485 |
+
with training_args.main_process_first():
|
486 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
487 |
+
os.remove(vocab_file)
|
488 |
+
|
489 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
490 |
+
if not os.path.isfile(vocab_file):
|
491 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
492 |
+
vocab_dict = create_vocabulary_from_data(
|
493 |
+
raw_datasets,
|
494 |
+
word_delimiter_token=word_delimiter_token,
|
495 |
+
unk_token=unk_token,
|
496 |
+
pad_token=pad_token,
|
497 |
+
)
|
498 |
+
|
499 |
+
# save vocab dict to be loaded into tokenizer
|
500 |
+
with open(vocab_file, "w") as file:
|
501 |
+
json.dump(vocab_dict, file)
|
502 |
+
|
503 |
+
# if tokenizer has just been created
|
504 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
505 |
+
tokenizer_kwargs = {
|
506 |
+
"config": config if config.tokenizer_class is not None else None,
|
507 |
+
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
508 |
+
"unk_token": unk_token,
|
509 |
+
"pad_token": pad_token,
|
510 |
+
"word_delimiter_token": word_delimiter_token,
|
511 |
+
}
|
512 |
+
|
513 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
514 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
515 |
+
# one local process can concurrently download model & vocab.
|
516 |
+
|
517 |
+
# load feature_extractor and tokenizer
|
518 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
519 |
+
tokenizer_name_or_path,
|
520 |
+
use_auth_token=data_args.use_auth_token,
|
521 |
+
**tokenizer_kwargs,
|
522 |
+
)
|
523 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
524 |
+
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
|
525 |
+
)
|
526 |
+
|
527 |
+
# adapt config
|
528 |
+
config.update(
|
529 |
+
{
|
530 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
531 |
+
"attention_dropout": model_args.attention_dropout,
|
532 |
+
"hidden_dropout": model_args.hidden_dropout,
|
533 |
+
"final_dropout": model_args.final_dropout,
|
534 |
+
"mask_time_prob": model_args.mask_time_prob,
|
535 |
+
"mask_time_length": model_args.mask_time_length,
|
536 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
537 |
+
"mask_feature_length": model_args.mask_feature_length,
|
538 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
539 |
+
"layerdrop": model_args.layerdrop,
|
540 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
541 |
+
"pad_token_id": tokenizer.pad_token_id,
|
542 |
+
"vocab_size": len(tokenizer),
|
543 |
+
"activation_dropout": model_args.activation_dropout,
|
544 |
+
}
|
545 |
+
)
|
546 |
+
|
547 |
+
# create model
|
548 |
+
model = AutoModelForCTC.from_pretrained(
|
549 |
+
model_args.model_name_or_path,
|
550 |
+
cache_dir=model_args.cache_dir,
|
551 |
+
config=config,
|
552 |
+
use_auth_token=data_args.use_auth_token,
|
553 |
+
)
|
554 |
+
|
555 |
+
# freeze encoder
|
556 |
+
if model_args.freeze_feature_encoder:
|
557 |
+
model.freeze_feature_encoder()
|
558 |
+
|
559 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
560 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
561 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
562 |
+
# via the `feature_extractor`
|
563 |
+
|
564 |
+
# make sure that dataset decodes audio with correct sampling rate
|
565 |
+
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
566 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
567 |
+
raw_datasets = raw_datasets.cast_column(
|
568 |
+
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
569 |
+
)
|
570 |
+
|
571 |
+
# derive max & min input length for sample rate & max duration
|
572 |
+
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
573 |
+
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
574 |
+
audio_column_name = data_args.audio_column_name
|
575 |
+
num_workers = data_args.preprocessing_num_workers
|
576 |
+
|
577 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
578 |
+
phoneme_language = data_args.phoneme_language
|
579 |
+
|
580 |
+
# Preprocessing the datasets.
|
581 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
582 |
+
def prepare_dataset(batch):
|
583 |
+
# load audio
|
584 |
+
sample = batch[audio_column_name]
|
585 |
+
|
586 |
+
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
587 |
+
batch["input_values"] = inputs.input_values[0]
|
588 |
+
batch["input_length"] = len(batch["input_values"])
|
589 |
+
|
590 |
+
# encode targets
|
591 |
+
additional_kwargs = {}
|
592 |
+
if phoneme_language is not None:
|
593 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
594 |
+
|
595 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
596 |
+
return batch
|
597 |
+
|
598 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
599 |
+
|
600 |
+
def is_text_still_present(string):
|
601 |
+
return len(string) > 5
|
602 |
+
|
603 |
+
# filter rows that have less than 5 characters after filtering.
|
604 |
+
raw_datasets = raw_datasets.filter(
|
605 |
+
is_text_still_present,
|
606 |
+
num_proc=num_workers,
|
607 |
+
input_columns=["target_text"],
|
608 |
+
)
|
609 |
+
|
610 |
+
vectorized_datasets = raw_datasets.map(
|
611 |
+
prepare_dataset,
|
612 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
613 |
+
num_proc=num_workers,
|
614 |
+
desc="preprocess datasets",
|
615 |
+
)
|
616 |
+
|
617 |
+
def is_audio_in_length_range(length):
|
618 |
+
return length > min_input_length and length < max_input_length
|
619 |
+
|
620 |
+
# filter data that is shorter than min_input_length
|
621 |
+
vectorized_datasets = vectorized_datasets.filter(
|
622 |
+
is_audio_in_length_range,
|
623 |
+
num_proc=num_workers,
|
624 |
+
input_columns=["input_length"],
|
625 |
+
)
|
626 |
+
|
627 |
+
|
628 |
+
|
629 |
+
# 7. Next, we can prepare the training.
|
630 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
631 |
+
# instantiate a data collator and the trainer
|
632 |
+
|
633 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
634 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
635 |
+
|
636 |
+
# for large datasets it is advised to run the preprocessing on a
|
637 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
638 |
+
# be a timeout when running the script in distributed mode.
|
639 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
640 |
+
# cached dataset
|
641 |
+
if data_args.preprocessing_only:
|
642 |
+
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
643 |
+
return
|
644 |
+
|
645 |
+
def compute_metrics(pred):
|
646 |
+
pred_logits = pred.predictions
|
647 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
648 |
+
|
649 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
650 |
+
|
651 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
652 |
+
# we do not want to group tokens when computing the metrics
|
653 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
654 |
+
|
655 |
+
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
656 |
+
|
657 |
+
return metrics
|
658 |
+
|
659 |
+
# Now save everything to be able to create a single processor later
|
660 |
+
if is_main_process(training_args.local_rank):
|
661 |
+
# save feature extractor, tokenizer and config
|
662 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
663 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
664 |
+
config.save_pretrained(training_args.output_dir)
|
665 |
+
|
666 |
+
try:
|
667 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
668 |
+
except (OSError, KeyError):
|
669 |
+
warnings.warn(
|
670 |
+
"Loading a processor from a feature extractor config that does not"
|
671 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
672 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
673 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
674 |
+
FutureWarning,
|
675 |
+
)
|
676 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
677 |
+
|
678 |
+
# Instantiate custom data collator
|
679 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
680 |
+
|
681 |
+
# Initialize Trainer
|
682 |
+
trainer = Trainer(
|
683 |
+
model=model,
|
684 |
+
data_collator=data_collator,
|
685 |
+
args=training_args,
|
686 |
+
compute_metrics=compute_metrics,
|
687 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
688 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
689 |
+
tokenizer=feature_extractor,
|
690 |
+
)
|
691 |
+
|
692 |
+
# 8. Finally, we can start training
|
693 |
+
|
694 |
+
# Training
|
695 |
+
if training_args.do_train:
|
696 |
+
|
697 |
+
# use last checkpoint if exist
|
698 |
+
if last_checkpoint is not None:
|
699 |
+
checkpoint = last_checkpoint
|
700 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
701 |
+
checkpoint = model_args.model_name_or_path
|
702 |
+
else:
|
703 |
+
checkpoint = None
|
704 |
+
|
705 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
706 |
+
trainer.save_model()
|
707 |
+
|
708 |
+
metrics = train_result.metrics
|
709 |
+
max_train_samples = (
|
710 |
+
data_args.max_train_samples
|
711 |
+
if data_args.max_train_samples is not None
|
712 |
+
else len(vectorized_datasets["train"])
|
713 |
+
)
|
714 |
+
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
715 |
+
|
716 |
+
trainer.log_metrics("train", metrics)
|
717 |
+
trainer.save_metrics("train", metrics)
|
718 |
+
trainer.save_state()
|
719 |
+
|
720 |
+
# Evaluation
|
721 |
+
results = {}
|
722 |
+
if training_args.do_eval:
|
723 |
+
logger.info("*** Evaluate ***")
|
724 |
+
metrics = trainer.evaluate()
|
725 |
+
max_eval_samples = (
|
726 |
+
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
727 |
+
)
|
728 |
+
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
729 |
+
|
730 |
+
trainer.log_metrics("eval", metrics)
|
731 |
+
trainer.save_metrics("eval", metrics)
|
732 |
+
|
733 |
+
# Write model card and (optionally) push to hub
|
734 |
+
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
735 |
+
kwargs = {
|
736 |
+
"finetuned_from": model_args.model_name_or_path,
|
737 |
+
"tasks": "speech-recognition",
|
738 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
739 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
740 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
741 |
+
}
|
742 |
+
if "common_voice" in data_args.dataset_name:
|
743 |
+
kwargs["language"] = config_name
|
744 |
+
|
745 |
+
if training_args.push_to_hub:
|
746 |
+
trainer.push_to_hub(**kwargs)
|
747 |
+
else:
|
748 |
+
trainer.create_model_card(**kwargs)
|
749 |
+
|
750 |
+
return results
|
751 |
+
|
752 |
+
|
753 |
+
if __name__ == "__main__":
|
754 |
+
main()
|
.ipynb_checkpoints/run_training-checkpoint.sh
CHANGED
@@ -3,7 +3,8 @@ python run_speech_recognition_ctc.py \
|
|
3 |
--model_name_or_path="facebook/wav2vec2-xls-r-1b" \
|
4 |
--dataset_config_name="de" \
|
5 |
--output_dir="./" \
|
6 |
-
|
|
|
7 |
--per_device_train_batch_size="8" \
|
8 |
--per_device_eval_batch_size="8" \
|
9 |
--gradient_accumulation_steps="4" \
|
|
|
3 |
--model_name_or_path="facebook/wav2vec2-xls-r-1b" \
|
4 |
--dataset_config_name="de" \
|
5 |
--output_dir="./" \
|
6 |
+
--overwrite_output_dir \
|
7 |
+
--num_train_epochs="2.5" \
|
8 |
--per_device_train_batch_size="8" \
|
9 |
--per_device_eval_batch_size="8" \
|
10 |
--gradient_accumulation_steps="4" \
|
.ipynb_checkpoints/special_tokens_map-checkpoint.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
.ipynb_checkpoints/vocab-checkpoint.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"!": 1, "\"": 2, "$": 3, "%": 4, "&": 5, "'": 6, "(": 7, ")": 8, "*": 9, "+": 10, ",": 11, "-": 12, ".": 13, "/": 14, ":": 15, ";": 16, "=": 17, "?": 18, "@": 19, "[": 20, "]": 21, "_": 22, "`": 23, "a": 24, "b": 25, "c": 26, "d": 27, "e": 28, "f": 29, "g": 30, "h": 31, "i": 32, "j": 33, "k": 34, "l": 35, "m": 36, "n": 37, "o": 38, "p": 39, "q": 40, "r": 41, "s": 42, "t": 43, "u": 44, "v": 45, "w": 46, "x": 47, "y": 48, "z": 49, "\u00a1": 50, "\u00a7": 51, "\u00ab": 52, "\u00b0": 53, "\u00b4": 54, "\u00b5": 55, "\u00b7": 56, "\u00bb": 57, "\u00d7": 58, "\u00df": 59, "\u00e0": 60, "\u00e1": 61, "\u00e2": 62, "\u00e3": 63, "\u00e4": 64, "\u00e5": 65, "\u00e6": 66, "\u00e7": 67, "\u00e8": 68, "\u00e9": 69, "\u00ea": 70, "\u00eb": 71, "\u00ec": 72, "\u00ed": 73, "\u00ee": 74, "\u00ef": 75, "\u00f0": 76, "\u00f1": 77, "\u00f2": 78, "\u00f3": 79, "\u00f4": 80, "\u00f5": 81, "\u00f6": 82, "\u00f8": 83, "\u00f9": 84, "\u00fa": 85, "\u00fb": 86, "\u00fc": 87, "\u00fd": 88, "\u00fe": 89, "\u0101": 90, "\u0103": 91, "\u0105": 92, "\u0107": 93, "\u010d": 94, "\u010f": 95, "\u0111": 96, "\u0113": 97, "\u0117": 98, "\u0119": 99, "\u011b": 100, "\u011f": 101, "\u0121": 102, "\u0127": 103, "\u012b": 104, "\u0131": 105, "\u0142": 106, "\u0144": 107, "\u0146": 108, "\u0148": 109, "\u014d": 110, "\u014f": 111, "\u0151": 112, "\u0153": 113, "\u0159": 114, "\u015b": 115, "\u015f": 116, "\u0161": 117, "\u0165": 118, "\u016b": 119, "\u016f": 120, "\u017a": 121, "\u017c": 122, "\u017e": 123, "\u01a1": 124, "\u01d0": 125, "\u01d4": 126, "\u0219": 127, "\u021b": 128, "\u0259": 129, "\u02bb": 130, "\u02be": 131, "\u02bf": 132, "\u0306": 133, "\u0307": 134, "\u0325": 135, "\u0430": 136, "\u0432": 137, "\u0435": 138, "\u0438": 139, "\u043a": 140, "\u043c": 141, "\u043e": 142, "\u0440": 143, "\u0441": 144, "\u0444": 145, "\u0447": 146, "\u0448": 147, "\u0479": 148, "\u05d0": 149, "\u05d1": 150, "\u05e0": 151, "\u05e2": 152, "\u05e9": 153, "\u0f0b": 154, "\u0f53": 155, "\u1e2b": 156, "\u1e5f": 157, "\u1e63": 158, "\u1e6d": 159, "\u1ea1": 160, "\u1ea3": 161, "\u1eaf": 162, "\u1eb1": 163, "\u1ebf": 164, "\u1ec5": 165, "\u1ec7": 166, "\u1ecd": 167, "\u1ed3": 168, "\u1ed9": 169, "\u1ee5": 170, "\u1ee9": 171, "\u2011": 172, "\u2013": 173, "\u2014": 174, "\u2018": 175, "\u2019": 176, "\u201a": 177, "\u201c": 178, "\u201d": 179, "\u201e": 180, "\u201f": 181, "\u2026": 182, "\u2032": 183, "\u2033": 184, "\u2039": 185, "\u203a": 186, "\u2192": 187, "\u2212": 188, "\u2261": 189, "\u27e8": 190, "\u27e9": 191, "\u30ab": 192, "\u4e1c": 193, "\u4e34": 194, "\u4e61": 195, "\u5173": 196, "\u5408": 197, "\u57ce": 198, "\u5b59": 199, "\u5c23": 200, "\u5e7a": 201, "\u652f": 202, "\u6bd4": 203, "\u6bdb": 204, "\u6cfd": 205, "\u7121": 206, "\u751f": 207, "\u81e3": 208, "\u8fb6": 209, "\u9053": 210, "\u9547": 211, "\u9ec3": 212, "|": 0, "[UNK]": 213, "[PAD]": 214}
|
added_tokens.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"<s>":
|
|
|
1 |
+
{"<s>": 70, "</s>": 71}
|
config.json
CHANGED
@@ -76,7 +76,7 @@
|
|
76 |
"num_hidden_layers": 48,
|
77 |
"num_negatives": 100,
|
78 |
"output_hidden_size": 1280,
|
79 |
-
"pad_token_id":
|
80 |
"proj_codevector_dim": 1024,
|
81 |
"tdnn_dilation": [
|
82 |
1,
|
@@ -102,6 +102,6 @@
|
|
102 |
"torch_dtype": "float32",
|
103 |
"transformers_version": "4.17.0.dev0",
|
104 |
"use_weighted_layer_sum": false,
|
105 |
-
"vocab_size":
|
106 |
"xvector_output_dim": 512
|
107 |
}
|
|
|
76 |
"num_hidden_layers": 48,
|
77 |
"num_negatives": 100,
|
78 |
"output_hidden_size": 1280,
|
79 |
+
"pad_token_id": 69,
|
80 |
"proj_codevector_dim": 1024,
|
81 |
"tdnn_dilation": [
|
82 |
1,
|
|
|
102 |
"torch_dtype": "float32",
|
103 |
"transformers_version": "4.17.0.dev0",
|
104 |
"use_weighted_layer_sum": false,
|
105 |
+
"vocab_size": 72,
|
106 |
"xvector_output_dim": 512
|
107 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64a8d46236324825c647641375f6b303a64c6787dc4b05b5d6eb4f95910b8b10
|
3 |
+
size 3850681649
|
run_speech_recognition_ctc.py
CHANGED
@@ -318,6 +318,7 @@ def create_vocabulary_from_data(
|
|
318 |
batch_size=-1,
|
319 |
keep_in_memory=True,
|
320 |
remove_columns=datasets["train"].column_names,
|
|
|
321 |
)
|
322 |
|
323 |
# take union of all unique characters in each dataset
|
@@ -434,8 +435,10 @@ def main():
|
|
434 |
# that make training complicated and do not help in transcribing the speech
|
435 |
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
436 |
# that could be easily picked up by the model
|
|
|
|
|
437 |
chars_to_ignore_regex = (
|
438 |
-
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
439 |
)
|
440 |
text_column_name = data_args.text_column_name
|
441 |
|
@@ -451,6 +454,7 @@ def main():
|
|
451 |
remove_special_characters,
|
452 |
remove_columns=[text_column_name],
|
453 |
desc="remove special characters from datasets",
|
|
|
454 |
)
|
455 |
|
456 |
# save special tokens for tokenizer
|
@@ -592,6 +596,17 @@ def main():
|
|
592 |
return batch
|
593 |
|
594 |
with training_args.main_process_first(desc="dataset map preprocessing"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
vectorized_datasets = raw_datasets.map(
|
596 |
prepare_dataset,
|
597 |
remove_columns=next(iter(raw_datasets.values())).column_names,
|
@@ -608,6 +623,8 @@ def main():
|
|
608 |
num_proc=num_workers,
|
609 |
input_columns=["input_length"],
|
610 |
)
|
|
|
|
|
611 |
|
612 |
# 7. Next, we can prepare the training.
|
613 |
# Let's use word error rate (WER) as our evaluation metric,
|
|
|
318 |
batch_size=-1,
|
319 |
keep_in_memory=True,
|
320 |
remove_columns=datasets["train"].column_names,
|
321 |
+
load_from_cache_file=False
|
322 |
)
|
323 |
|
324 |
# take union of all unique characters in each dataset
|
|
|
435 |
# that make training complicated and do not help in transcribing the speech
|
436 |
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
437 |
# that could be easily picked up by the model
|
438 |
+
odd_chars_regex_string = '$&()*+.\/=@\[\]_`¡§«°´µ·»×àáâãåæçèéêëìíîïðñòóôõøùúûýþāăąćčďđēėęěğġħīıłńņňōŏőœřśşšťūůźżžơǐǔșțəʻʾʿ̥̆̇авеикморсфчшѹאבנעש་ནḫṟṣṭạảắằếễệọồộụứ‑‚„‟′″‹›→−≡⟨⟩カ东临乡关合城孙尣幺支比毛泽無生臣辶道镇黃'
|
439 |
+
|
440 |
chars_to_ignore_regex = (
|
441 |
+
f'[{"".join(data_args.chars_to_ignore)+ odd_chars_regex_string}]' if data_args.chars_to_ignore is not None else None
|
442 |
)
|
443 |
text_column_name = data_args.text_column_name
|
444 |
|
|
|
454 |
remove_special_characters,
|
455 |
remove_columns=[text_column_name],
|
456 |
desc="remove special characters from datasets",
|
457 |
+
load_from_cache_file=False
|
458 |
)
|
459 |
|
460 |
# save special tokens for tokenizer
|
|
|
596 |
return batch
|
597 |
|
598 |
with training_args.main_process_first(desc="dataset map preprocessing"):
|
599 |
+
|
600 |
+
def is_text_still_present(string):
|
601 |
+
return len(string) > 5
|
602 |
+
|
603 |
+
# filter rows that have less than 5 characters after filtering.
|
604 |
+
raw_datasets = raw_datasets.filter(
|
605 |
+
is_text_still_present,
|
606 |
+
num_proc=num_workers,
|
607 |
+
input_columns=["target_text"],
|
608 |
+
)
|
609 |
+
|
610 |
vectorized_datasets = raw_datasets.map(
|
611 |
prepare_dataset,
|
612 |
remove_columns=next(iter(raw_datasets.values())).column_names,
|
|
|
623 |
num_proc=num_workers,
|
624 |
input_columns=["input_length"],
|
625 |
)
|
626 |
+
|
627 |
+
|
628 |
|
629 |
# 7. Next, we can prepare the training.
|
630 |
# Let's use word error rate (WER) as our evaluation metric,
|
run_training.sh
CHANGED
@@ -3,7 +3,8 @@ python run_speech_recognition_ctc.py \
|
|
3 |
--model_name_or_path="facebook/wav2vec2-xls-r-1b" \
|
4 |
--dataset_config_name="de" \
|
5 |
--output_dir="./" \
|
6 |
-
|
|
|
7 |
--per_device_train_batch_size="8" \
|
8 |
--per_device_eval_batch_size="8" \
|
9 |
--gradient_accumulation_steps="4" \
|
|
|
3 |
--model_name_or_path="facebook/wav2vec2-xls-r-1b" \
|
4 |
--dataset_config_name="de" \
|
5 |
--output_dir="./" \
|
6 |
+
--overwrite_output_dir \
|
7 |
+
--num_train_epochs="2.5" \
|
8 |
--per_device_train_batch_size="8" \
|
9 |
--per_device_eval_batch_size="8" \
|
10 |
--gradient_accumulation_steps="4" \
|
special_tokens_map.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
trainer_state.json
DELETED
@@ -1,1900 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": null,
|
3 |
-
"best_model_checkpoint": null,
|
4 |
-
"epoch": 1.9999816584435355,
|
5 |
-
"global_step": 27260,
|
6 |
-
"is_hyper_param_search": false,
|
7 |
-
"is_local_process_zero": true,
|
8 |
-
"is_world_process_zero": true,
|
9 |
-
"log_history": [
|
10 |
-
{
|
11 |
-
"epoch": 0.01,
|
12 |
-
"learning_rate": 3.675e-06,
|
13 |
-
"loss": 11.4989,
|
14 |
-
"step": 100
|
15 |
-
},
|
16 |
-
{
|
17 |
-
"epoch": 0.01,
|
18 |
-
"learning_rate": 7.425e-06,
|
19 |
-
"loss": 3.2394,
|
20 |
-
"step": 200
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"epoch": 0.02,
|
24 |
-
"learning_rate": 1.1174999999999999e-05,
|
25 |
-
"loss": 3.0303,
|
26 |
-
"step": 300
|
27 |
-
},
|
28 |
-
{
|
29 |
-
"epoch": 0.03,
|
30 |
-
"learning_rate": 1.4925e-05,
|
31 |
-
"loss": 2.9052,
|
32 |
-
"step": 400
|
33 |
-
},
|
34 |
-
{
|
35 |
-
"epoch": 0.04,
|
36 |
-
"learning_rate": 1.8675e-05,
|
37 |
-
"loss": 2.1033,
|
38 |
-
"step": 500
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"epoch": 0.04,
|
42 |
-
"learning_rate": 2.2424999999999996e-05,
|
43 |
-
"loss": 1.674,
|
44 |
-
"step": 600
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"epoch": 0.05,
|
48 |
-
"learning_rate": 2.6174999999999996e-05,
|
49 |
-
"loss": 1.5568,
|
50 |
-
"step": 700
|
51 |
-
},
|
52 |
-
{
|
53 |
-
"epoch": 0.06,
|
54 |
-
"learning_rate": 2.9925e-05,
|
55 |
-
"loss": 1.4654,
|
56 |
-
"step": 800
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"epoch": 0.07,
|
60 |
-
"learning_rate": 3.3675e-05,
|
61 |
-
"loss": 1.3031,
|
62 |
-
"step": 900
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"epoch": 0.07,
|
66 |
-
"learning_rate": 3.7424999999999995e-05,
|
67 |
-
"loss": 1.1842,
|
68 |
-
"step": 1000
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"epoch": 0.07,
|
72 |
-
"eval_loss": 0.44609957933425903,
|
73 |
-
"eval_runtime": 1053.3237,
|
74 |
-
"eval_samples_per_second": 15.197,
|
75 |
-
"eval_steps_per_second": 1.9,
|
76 |
-
"eval_wer": 0.49177182344586473,
|
77 |
-
"step": 1000
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"epoch": 0.08,
|
81 |
-
"learning_rate": 4.1175e-05,
|
82 |
-
"loss": 1.1329,
|
83 |
-
"step": 1100
|
84 |
-
},
|
85 |
-
{
|
86 |
-
"epoch": 0.09,
|
87 |
-
"learning_rate": 4.4924999999999994e-05,
|
88 |
-
"loss": 1.1316,
|
89 |
-
"step": 1200
|
90 |
-
},
|
91 |
-
{
|
92 |
-
"epoch": 0.1,
|
93 |
-
"learning_rate": 4.8675e-05,
|
94 |
-
"loss": 1.1092,
|
95 |
-
"step": 1300
|
96 |
-
},
|
97 |
-
{
|
98 |
-
"epoch": 0.1,
|
99 |
-
"learning_rate": 5.2424999999999994e-05,
|
100 |
-
"loss": 1.1215,
|
101 |
-
"step": 1400
|
102 |
-
},
|
103 |
-
{
|
104 |
-
"epoch": 0.11,
|
105 |
-
"learning_rate": 5.6175e-05,
|
106 |
-
"loss": 1.1165,
|
107 |
-
"step": 1500
|
108 |
-
},
|
109 |
-
{
|
110 |
-
"epoch": 0.12,
|
111 |
-
"learning_rate": 5.9925e-05,
|
112 |
-
"loss": 1.0946,
|
113 |
-
"step": 1600
|
114 |
-
},
|
115 |
-
{
|
116 |
-
"epoch": 0.12,
|
117 |
-
"learning_rate": 6.367499999999999e-05,
|
118 |
-
"loss": 1.1189,
|
119 |
-
"step": 1700
|
120 |
-
},
|
121 |
-
{
|
122 |
-
"epoch": 0.13,
|
123 |
-
"learning_rate": 6.7425e-05,
|
124 |
-
"loss": 1.1175,
|
125 |
-
"step": 1800
|
126 |
-
},
|
127 |
-
{
|
128 |
-
"epoch": 0.14,
|
129 |
-
"learning_rate": 7.1175e-05,
|
130 |
-
"loss": 1.1254,
|
131 |
-
"step": 1900
|
132 |
-
},
|
133 |
-
{
|
134 |
-
"epoch": 0.15,
|
135 |
-
"learning_rate": 7.492499999999999e-05,
|
136 |
-
"loss": 1.1317,
|
137 |
-
"step": 2000
|
138 |
-
},
|
139 |
-
{
|
140 |
-
"epoch": 0.15,
|
141 |
-
"eval_loss": 0.2668535113334656,
|
142 |
-
"eval_runtime": 988.5751,
|
143 |
-
"eval_samples_per_second": 16.192,
|
144 |
-
"eval_steps_per_second": 2.024,
|
145 |
-
"eval_wer": 0.2748006118212608,
|
146 |
-
"step": 2000
|
147 |
-
},
|
148 |
-
{
|
149 |
-
"epoch": 0.15,
|
150 |
-
"learning_rate": 7.470902612826603e-05,
|
151 |
-
"loss": 1.1296,
|
152 |
-
"step": 2100
|
153 |
-
},
|
154 |
-
{
|
155 |
-
"epoch": 0.16,
|
156 |
-
"learning_rate": 7.441211401425178e-05,
|
157 |
-
"loss": 1.1406,
|
158 |
-
"step": 2200
|
159 |
-
},
|
160 |
-
{
|
161 |
-
"epoch": 0.17,
|
162 |
-
"learning_rate": 7.411520190023751e-05,
|
163 |
-
"loss": 1.1362,
|
164 |
-
"step": 2300
|
165 |
-
},
|
166 |
-
{
|
167 |
-
"epoch": 0.18,
|
168 |
-
"learning_rate": 7.381828978622327e-05,
|
169 |
-
"loss": 1.1292,
|
170 |
-
"step": 2400
|
171 |
-
},
|
172 |
-
{
|
173 |
-
"epoch": 0.18,
|
174 |
-
"learning_rate": 7.352137767220902e-05,
|
175 |
-
"loss": 1.105,
|
176 |
-
"step": 2500
|
177 |
-
},
|
178 |
-
{
|
179 |
-
"epoch": 0.19,
|
180 |
-
"learning_rate": 7.322446555819477e-05,
|
181 |
-
"loss": 1.1231,
|
182 |
-
"step": 2600
|
183 |
-
},
|
184 |
-
{
|
185 |
-
"epoch": 0.2,
|
186 |
-
"learning_rate": 7.292755344418051e-05,
|
187 |
-
"loss": 1.1187,
|
188 |
-
"step": 2700
|
189 |
-
},
|
190 |
-
{
|
191 |
-
"epoch": 0.21,
|
192 |
-
"learning_rate": 7.263064133016626e-05,
|
193 |
-
"loss": 1.1339,
|
194 |
-
"step": 2800
|
195 |
-
},
|
196 |
-
{
|
197 |
-
"epoch": 0.21,
|
198 |
-
"learning_rate": 7.233372921615201e-05,
|
199 |
-
"loss": 1.1241,
|
200 |
-
"step": 2900
|
201 |
-
},
|
202 |
-
{
|
203 |
-
"epoch": 0.22,
|
204 |
-
"learning_rate": 7.203681710213777e-05,
|
205 |
-
"loss": 1.1029,
|
206 |
-
"step": 3000
|
207 |
-
},
|
208 |
-
{
|
209 |
-
"epoch": 0.22,
|
210 |
-
"eval_loss": 0.2638496458530426,
|
211 |
-
"eval_runtime": 987.5568,
|
212 |
-
"eval_samples_per_second": 16.209,
|
213 |
-
"eval_steps_per_second": 2.026,
|
214 |
-
"eval_wer": 0.2705875122910521,
|
215 |
-
"step": 3000
|
216 |
-
},
|
217 |
-
{
|
218 |
-
"epoch": 0.23,
|
219 |
-
"learning_rate": 7.173990498812351e-05,
|
220 |
-
"loss": 1.1215,
|
221 |
-
"step": 3100
|
222 |
-
},
|
223 |
-
{
|
224 |
-
"epoch": 0.23,
|
225 |
-
"learning_rate": 7.144299287410925e-05,
|
226 |
-
"loss": 1.1067,
|
227 |
-
"step": 3200
|
228 |
-
},
|
229 |
-
{
|
230 |
-
"epoch": 0.24,
|
231 |
-
"learning_rate": 7.114608076009501e-05,
|
232 |
-
"loss": 1.1126,
|
233 |
-
"step": 3300
|
234 |
-
},
|
235 |
-
{
|
236 |
-
"epoch": 0.25,
|
237 |
-
"learning_rate": 7.084916864608076e-05,
|
238 |
-
"loss": 1.109,
|
239 |
-
"step": 3400
|
240 |
-
},
|
241 |
-
{
|
242 |
-
"epoch": 0.26,
|
243 |
-
"learning_rate": 7.05522565320665e-05,
|
244 |
-
"loss": 1.1077,
|
245 |
-
"step": 3500
|
246 |
-
},
|
247 |
-
{
|
248 |
-
"epoch": 0.26,
|
249 |
-
"learning_rate": 7.025534441805225e-05,
|
250 |
-
"loss": 1.1,
|
251 |
-
"step": 3600
|
252 |
-
},
|
253 |
-
{
|
254 |
-
"epoch": 0.27,
|
255 |
-
"learning_rate": 6.9958432304038e-05,
|
256 |
-
"loss": 1.1061,
|
257 |
-
"step": 3700
|
258 |
-
},
|
259 |
-
{
|
260 |
-
"epoch": 0.28,
|
261 |
-
"learning_rate": 6.966152019002374e-05,
|
262 |
-
"loss": 1.103,
|
263 |
-
"step": 3800
|
264 |
-
},
|
265 |
-
{
|
266 |
-
"epoch": 0.29,
|
267 |
-
"learning_rate": 6.936460807600949e-05,
|
268 |
-
"loss": 1.0947,
|
269 |
-
"step": 3900
|
270 |
-
},
|
271 |
-
{
|
272 |
-
"epoch": 0.29,
|
273 |
-
"learning_rate": 6.906769596199525e-05,
|
274 |
-
"loss": 1.0949,
|
275 |
-
"step": 4000
|
276 |
-
},
|
277 |
-
{
|
278 |
-
"epoch": 0.29,
|
279 |
-
"eval_loss": 0.25188884139060974,
|
280 |
-
"eval_runtime": 996.0428,
|
281 |
-
"eval_samples_per_second": 16.071,
|
282 |
-
"eval_steps_per_second": 2.009,
|
283 |
-
"eval_wer": 0.26274172402490986,
|
284 |
-
"step": 4000
|
285 |
-
},
|
286 |
-
{
|
287 |
-
"epoch": 0.3,
|
288 |
-
"learning_rate": 6.8770783847981e-05,
|
289 |
-
"loss": 1.1076,
|
290 |
-
"step": 4100
|
291 |
-
},
|
292 |
-
{
|
293 |
-
"epoch": 0.31,
|
294 |
-
"learning_rate": 6.847387173396674e-05,
|
295 |
-
"loss": 1.1012,
|
296 |
-
"step": 4200
|
297 |
-
},
|
298 |
-
{
|
299 |
-
"epoch": 0.32,
|
300 |
-
"learning_rate": 6.817695961995249e-05,
|
301 |
-
"loss": 1.081,
|
302 |
-
"step": 4300
|
303 |
-
},
|
304 |
-
{
|
305 |
-
"epoch": 0.32,
|
306 |
-
"learning_rate": 6.788004750593824e-05,
|
307 |
-
"loss": 1.0868,
|
308 |
-
"step": 4400
|
309 |
-
},
|
310 |
-
{
|
311 |
-
"epoch": 0.33,
|
312 |
-
"learning_rate": 6.758313539192398e-05,
|
313 |
-
"loss": 1.0956,
|
314 |
-
"step": 4500
|
315 |
-
},
|
316 |
-
{
|
317 |
-
"epoch": 0.34,
|
318 |
-
"learning_rate": 6.728622327790973e-05,
|
319 |
-
"loss": 1.0953,
|
320 |
-
"step": 4600
|
321 |
-
},
|
322 |
-
{
|
323 |
-
"epoch": 0.34,
|
324 |
-
"learning_rate": 6.698931116389548e-05,
|
325 |
-
"loss": 1.0952,
|
326 |
-
"step": 4700
|
327 |
-
},
|
328 |
-
{
|
329 |
-
"epoch": 0.35,
|
330 |
-
"learning_rate": 6.669239904988122e-05,
|
331 |
-
"loss": 1.0968,
|
332 |
-
"step": 4800
|
333 |
-
},
|
334 |
-
{
|
335 |
-
"epoch": 0.36,
|
336 |
-
"learning_rate": 6.639548693586698e-05,
|
337 |
-
"loss": 1.0827,
|
338 |
-
"step": 4900
|
339 |
-
},
|
340 |
-
{
|
341 |
-
"epoch": 0.37,
|
342 |
-
"learning_rate": 6.609857482185273e-05,
|
343 |
-
"loss": 1.0923,
|
344 |
-
"step": 5000
|
345 |
-
},
|
346 |
-
{
|
347 |
-
"epoch": 0.37,
|
348 |
-
"eval_loss": 0.24751192331314087,
|
349 |
-
"eval_runtime": 984.8205,
|
350 |
-
"eval_samples_per_second": 16.254,
|
351 |
-
"eval_steps_per_second": 2.032,
|
352 |
-
"eval_wer": 0.25769556429585927,
|
353 |
-
"step": 5000
|
354 |
-
},
|
355 |
-
{
|
356 |
-
"epoch": 0.37,
|
357 |
-
"learning_rate": 6.580166270783846e-05,
|
358 |
-
"loss": 1.0895,
|
359 |
-
"step": 5100
|
360 |
-
},
|
361 |
-
{
|
362 |
-
"epoch": 0.38,
|
363 |
-
"learning_rate": 6.550771971496436e-05,
|
364 |
-
"loss": 1.0851,
|
365 |
-
"step": 5200
|
366 |
-
},
|
367 |
-
{
|
368 |
-
"epoch": 0.39,
|
369 |
-
"learning_rate": 6.521080760095011e-05,
|
370 |
-
"loss": 1.1124,
|
371 |
-
"step": 5300
|
372 |
-
},
|
373 |
-
{
|
374 |
-
"epoch": 0.4,
|
375 |
-
"learning_rate": 6.491686460807601e-05,
|
376 |
-
"loss": 1.0809,
|
377 |
-
"step": 5400
|
378 |
-
},
|
379 |
-
{
|
380 |
-
"epoch": 0.4,
|
381 |
-
"learning_rate": 6.461995249406176e-05,
|
382 |
-
"loss": 1.0985,
|
383 |
-
"step": 5500
|
384 |
-
},
|
385 |
-
{
|
386 |
-
"epoch": 0.41,
|
387 |
-
"learning_rate": 6.432304038004749e-05,
|
388 |
-
"loss": 1.086,
|
389 |
-
"step": 5600
|
390 |
-
},
|
391 |
-
{
|
392 |
-
"epoch": 0.42,
|
393 |
-
"learning_rate": 6.402612826603325e-05,
|
394 |
-
"loss": 1.0823,
|
395 |
-
"step": 5700
|
396 |
-
},
|
397 |
-
{
|
398 |
-
"epoch": 0.43,
|
399 |
-
"learning_rate": 6.3729216152019e-05,
|
400 |
-
"loss": 1.0732,
|
401 |
-
"step": 5800
|
402 |
-
},
|
403 |
-
{
|
404 |
-
"epoch": 0.43,
|
405 |
-
"learning_rate": 6.343230403800475e-05,
|
406 |
-
"loss": 1.076,
|
407 |
-
"step": 5900
|
408 |
-
},
|
409 |
-
{
|
410 |
-
"epoch": 0.44,
|
411 |
-
"learning_rate": 6.313539192399049e-05,
|
412 |
-
"loss": 1.0847,
|
413 |
-
"step": 6000
|
414 |
-
},
|
415 |
-
{
|
416 |
-
"epoch": 0.44,
|
417 |
-
"eval_loss": 0.24355509877204895,
|
418 |
-
"eval_runtime": 984.3756,
|
419 |
-
"eval_samples_per_second": 16.261,
|
420 |
-
"eval_steps_per_second": 2.033,
|
421 |
-
"eval_wer": 0.26121217087293785,
|
422 |
-
"step": 6000
|
423 |
-
},
|
424 |
-
{
|
425 |
-
"epoch": 0.45,
|
426 |
-
"learning_rate": 6.283847980997624e-05,
|
427 |
-
"loss": 1.0748,
|
428 |
-
"step": 6100
|
429 |
-
},
|
430 |
-
{
|
431 |
-
"epoch": 0.45,
|
432 |
-
"learning_rate": 6.254156769596199e-05,
|
433 |
-
"loss": 1.0836,
|
434 |
-
"step": 6200
|
435 |
-
},
|
436 |
-
{
|
437 |
-
"epoch": 0.46,
|
438 |
-
"learning_rate": 6.224465558194773e-05,
|
439 |
-
"loss": 1.084,
|
440 |
-
"step": 6300
|
441 |
-
},
|
442 |
-
{
|
443 |
-
"epoch": 0.47,
|
444 |
-
"learning_rate": 6.194774346793349e-05,
|
445 |
-
"loss": 1.0649,
|
446 |
-
"step": 6400
|
447 |
-
},
|
448 |
-
{
|
449 |
-
"epoch": 0.48,
|
450 |
-
"learning_rate": 6.165083135391923e-05,
|
451 |
-
"loss": 1.0751,
|
452 |
-
"step": 6500
|
453 |
-
},
|
454 |
-
{
|
455 |
-
"epoch": 0.48,
|
456 |
-
"learning_rate": 6.135391923990499e-05,
|
457 |
-
"loss": 1.0773,
|
458 |
-
"step": 6600
|
459 |
-
},
|
460 |
-
{
|
461 |
-
"epoch": 0.49,
|
462 |
-
"learning_rate": 6.105700712589073e-05,
|
463 |
-
"loss": 1.095,
|
464 |
-
"step": 6700
|
465 |
-
},
|
466 |
-
{
|
467 |
-
"epoch": 0.5,
|
468 |
-
"learning_rate": 6.076009501187648e-05,
|
469 |
-
"loss": 1.0629,
|
470 |
-
"step": 6800
|
471 |
-
},
|
472 |
-
{
|
473 |
-
"epoch": 0.51,
|
474 |
-
"learning_rate": 6.0463182897862234e-05,
|
475 |
-
"loss": 1.0904,
|
476 |
-
"step": 6900
|
477 |
-
},
|
478 |
-
{
|
479 |
-
"epoch": 0.51,
|
480 |
-
"learning_rate": 6.0166270783847974e-05,
|
481 |
-
"loss": 1.0667,
|
482 |
-
"step": 7000
|
483 |
-
},
|
484 |
-
{
|
485 |
-
"epoch": 0.51,
|
486 |
-
"eval_loss": 0.24724909663200378,
|
487 |
-
"eval_runtime": 983.1677,
|
488 |
-
"eval_samples_per_second": 16.281,
|
489 |
-
"eval_steps_per_second": 2.035,
|
490 |
-
"eval_wer": 0.26608762154484866,
|
491 |
-
"step": 7000
|
492 |
-
},
|
493 |
-
{
|
494 |
-
"epoch": 0.52,
|
495 |
-
"learning_rate": 5.986935866983372e-05,
|
496 |
-
"loss": 1.0825,
|
497 |
-
"step": 7100
|
498 |
-
},
|
499 |
-
{
|
500 |
-
"epoch": 0.53,
|
501 |
-
"learning_rate": 5.9572446555819474e-05,
|
502 |
-
"loss": 1.0811,
|
503 |
-
"step": 7200
|
504 |
-
},
|
505 |
-
{
|
506 |
-
"epoch": 0.54,
|
507 |
-
"learning_rate": 5.927553444180522e-05,
|
508 |
-
"loss": 1.0906,
|
509 |
-
"step": 7300
|
510 |
-
},
|
511 |
-
{
|
512 |
-
"epoch": 0.54,
|
513 |
-
"learning_rate": 5.8978622327790975e-05,
|
514 |
-
"loss": 1.0784,
|
515 |
-
"step": 7400
|
516 |
-
},
|
517 |
-
{
|
518 |
-
"epoch": 0.55,
|
519 |
-
"learning_rate": 5.8681710213776715e-05,
|
520 |
-
"loss": 1.0822,
|
521 |
-
"step": 7500
|
522 |
-
},
|
523 |
-
{
|
524 |
-
"epoch": 0.56,
|
525 |
-
"learning_rate": 5.838479809976246e-05,
|
526 |
-
"loss": 1.0802,
|
527 |
-
"step": 7600
|
528 |
-
},
|
529 |
-
{
|
530 |
-
"epoch": 0.56,
|
531 |
-
"learning_rate": 5.8087885985748215e-05,
|
532 |
-
"loss": 1.0805,
|
533 |
-
"step": 7700
|
534 |
-
},
|
535 |
-
{
|
536 |
-
"epoch": 0.57,
|
537 |
-
"learning_rate": 5.779097387173396e-05,
|
538 |
-
"loss": 1.093,
|
539 |
-
"step": 7800
|
540 |
-
},
|
541 |
-
{
|
542 |
-
"epoch": 0.58,
|
543 |
-
"learning_rate": 5.749406175771971e-05,
|
544 |
-
"loss": 1.0456,
|
545 |
-
"step": 7900
|
546 |
-
},
|
547 |
-
{
|
548 |
-
"epoch": 0.59,
|
549 |
-
"learning_rate": 5.7197149643705455e-05,
|
550 |
-
"loss": 1.0709,
|
551 |
-
"step": 8000
|
552 |
-
},
|
553 |
-
{
|
554 |
-
"epoch": 0.59,
|
555 |
-
"eval_loss": 0.24887976050376892,
|
556 |
-
"eval_runtime": 982.4054,
|
557 |
-
"eval_samples_per_second": 16.294,
|
558 |
-
"eval_steps_per_second": 2.037,
|
559 |
-
"eval_wer": 0.26095269310608543,
|
560 |
-
"step": 8000
|
561 |
-
},
|
562 |
-
{
|
563 |
-
"epoch": 0.59,
|
564 |
-
"learning_rate": 5.690023752969121e-05,
|
565 |
-
"loss": 1.0677,
|
566 |
-
"step": 8100
|
567 |
-
},
|
568 |
-
{
|
569 |
-
"epoch": 0.6,
|
570 |
-
"learning_rate": 5.6603325415676956e-05,
|
571 |
-
"loss": 1.0659,
|
572 |
-
"step": 8200
|
573 |
-
},
|
574 |
-
{
|
575 |
-
"epoch": 0.61,
|
576 |
-
"learning_rate": 5.630641330166271e-05,
|
577 |
-
"loss": 1.0788,
|
578 |
-
"step": 8300
|
579 |
-
},
|
580 |
-
{
|
581 |
-
"epoch": 0.62,
|
582 |
-
"learning_rate": 5.600950118764845e-05,
|
583 |
-
"loss": 1.071,
|
584 |
-
"step": 8400
|
585 |
-
},
|
586 |
-
{
|
587 |
-
"epoch": 0.62,
|
588 |
-
"learning_rate": 5.5712589073634196e-05,
|
589 |
-
"loss": 1.0669,
|
590 |
-
"step": 8500
|
591 |
-
},
|
592 |
-
{
|
593 |
-
"epoch": 0.63,
|
594 |
-
"learning_rate": 5.541567695961995e-05,
|
595 |
-
"loss": 1.0728,
|
596 |
-
"step": 8600
|
597 |
-
},
|
598 |
-
{
|
599 |
-
"epoch": 0.64,
|
600 |
-
"learning_rate": 5.512173396674584e-05,
|
601 |
-
"loss": 1.0652,
|
602 |
-
"step": 8700
|
603 |
-
},
|
604 |
-
{
|
605 |
-
"epoch": 0.65,
|
606 |
-
"learning_rate": 5.482482185273159e-05,
|
607 |
-
"loss": 1.0632,
|
608 |
-
"step": 8800
|
609 |
-
},
|
610 |
-
{
|
611 |
-
"epoch": 0.65,
|
612 |
-
"learning_rate": 5.452790973871733e-05,
|
613 |
-
"loss": 1.048,
|
614 |
-
"step": 8900
|
615 |
-
},
|
616 |
-
{
|
617 |
-
"epoch": 0.66,
|
618 |
-
"learning_rate": 5.4230997624703083e-05,
|
619 |
-
"loss": 1.0472,
|
620 |
-
"step": 9000
|
621 |
-
},
|
622 |
-
{
|
623 |
-
"epoch": 0.66,
|
624 |
-
"eval_loss": 0.23543120920658112,
|
625 |
-
"eval_runtime": 985.8901,
|
626 |
-
"eval_samples_per_second": 16.236,
|
627 |
-
"eval_steps_per_second": 2.03,
|
628 |
-
"eval_wer": 0.24997268655085764,
|
629 |
-
"step": 9000
|
630 |
-
},
|
631 |
-
{
|
632 |
-
"epoch": 0.67,
|
633 |
-
"learning_rate": 5.393408551068883e-05,
|
634 |
-
"loss": 1.0552,
|
635 |
-
"step": 9100
|
636 |
-
},
|
637 |
-
{
|
638 |
-
"epoch": 0.67,
|
639 |
-
"learning_rate": 5.3637173396674584e-05,
|
640 |
-
"loss": 1.0581,
|
641 |
-
"step": 9200
|
642 |
-
},
|
643 |
-
{
|
644 |
-
"epoch": 0.68,
|
645 |
-
"learning_rate": 5.3340261282660324e-05,
|
646 |
-
"loss": 1.0658,
|
647 |
-
"step": 9300
|
648 |
-
},
|
649 |
-
{
|
650 |
-
"epoch": 0.69,
|
651 |
-
"learning_rate": 5.304334916864607e-05,
|
652 |
-
"loss": 1.0603,
|
653 |
-
"step": 9400
|
654 |
-
},
|
655 |
-
{
|
656 |
-
"epoch": 0.7,
|
657 |
-
"learning_rate": 5.2746437054631824e-05,
|
658 |
-
"loss": 1.0661,
|
659 |
-
"step": 9500
|
660 |
-
},
|
661 |
-
{
|
662 |
-
"epoch": 0.7,
|
663 |
-
"learning_rate": 5.244952494061757e-05,
|
664 |
-
"loss": 1.0554,
|
665 |
-
"step": 9600
|
666 |
-
},
|
667 |
-
{
|
668 |
-
"epoch": 0.71,
|
669 |
-
"learning_rate": 5.2152612826603325e-05,
|
670 |
-
"loss": 1.0728,
|
671 |
-
"step": 9700
|
672 |
-
},
|
673 |
-
{
|
674 |
-
"epoch": 0.72,
|
675 |
-
"learning_rate": 5.1855700712589065e-05,
|
676 |
-
"loss": 1.0513,
|
677 |
-
"step": 9800
|
678 |
-
},
|
679 |
-
{
|
680 |
-
"epoch": 0.73,
|
681 |
-
"learning_rate": 5.155878859857482e-05,
|
682 |
-
"loss": 1.0379,
|
683 |
-
"step": 9900
|
684 |
-
},
|
685 |
-
{
|
686 |
-
"epoch": 0.73,
|
687 |
-
"learning_rate": 5.1261876484560565e-05,
|
688 |
-
"loss": 1.0604,
|
689 |
-
"step": 10000
|
690 |
-
},
|
691 |
-
{
|
692 |
-
"epoch": 0.73,
|
693 |
-
"eval_loss": 0.23458585143089294,
|
694 |
-
"eval_runtime": 986.1525,
|
695 |
-
"eval_samples_per_second": 16.232,
|
696 |
-
"eval_steps_per_second": 2.029,
|
697 |
-
"eval_wer": 0.2485182453840271,
|
698 |
-
"step": 10000
|
699 |
-
},
|
700 |
-
{
|
701 |
-
"epoch": 0.74,
|
702 |
-
"learning_rate": 5.096496437054632e-05,
|
703 |
-
"loss": 1.0632,
|
704 |
-
"step": 10100
|
705 |
-
},
|
706 |
-
{
|
707 |
-
"epoch": 0.75,
|
708 |
-
"learning_rate": 5.0668052256532065e-05,
|
709 |
-
"loss": 1.0526,
|
710 |
-
"step": 10200
|
711 |
-
},
|
712 |
-
{
|
713 |
-
"epoch": 0.76,
|
714 |
-
"learning_rate": 5.0371140142517805e-05,
|
715 |
-
"loss": 1.0314,
|
716 |
-
"step": 10300
|
717 |
-
},
|
718 |
-
{
|
719 |
-
"epoch": 0.76,
|
720 |
-
"learning_rate": 5.007422802850356e-05,
|
721 |
-
"loss": 1.0508,
|
722 |
-
"step": 10400
|
723 |
-
},
|
724 |
-
{
|
725 |
-
"epoch": 0.77,
|
726 |
-
"learning_rate": 4.9777315914489306e-05,
|
727 |
-
"loss": 1.0446,
|
728 |
-
"step": 10500
|
729 |
-
},
|
730 |
-
{
|
731 |
-
"epoch": 0.78,
|
732 |
-
"learning_rate": 4.948040380047506e-05,
|
733 |
-
"loss": 1.0361,
|
734 |
-
"step": 10600
|
735 |
-
},
|
736 |
-
{
|
737 |
-
"epoch": 0.79,
|
738 |
-
"learning_rate": 4.91834916864608e-05,
|
739 |
-
"loss": 1.0319,
|
740 |
-
"step": 10700
|
741 |
-
},
|
742 |
-
{
|
743 |
-
"epoch": 0.79,
|
744 |
-
"learning_rate": 4.8886579572446546e-05,
|
745 |
-
"loss": 1.0178,
|
746 |
-
"step": 10800
|
747 |
-
},
|
748 |
-
{
|
749 |
-
"epoch": 0.8,
|
750 |
-
"learning_rate": 4.85896674584323e-05,
|
751 |
-
"loss": 1.0301,
|
752 |
-
"step": 10900
|
753 |
-
},
|
754 |
-
{
|
755 |
-
"epoch": 0.81,
|
756 |
-
"learning_rate": 4.8292755344418046e-05,
|
757 |
-
"loss": 1.0375,
|
758 |
-
"step": 11000
|
759 |
-
},
|
760 |
-
{
|
761 |
-
"epoch": 0.81,
|
762 |
-
"eval_loss": 0.2285824865102768,
|
763 |
-
"eval_runtime": 979.8277,
|
764 |
-
"eval_samples_per_second": 16.337,
|
765 |
-
"eval_steps_per_second": 2.042,
|
766 |
-
"eval_wer": 0.23898585163334427,
|
767 |
-
"step": 11000
|
768 |
-
},
|
769 |
-
{
|
770 |
-
"epoch": 0.81,
|
771 |
-
"learning_rate": 4.79958432304038e-05,
|
772 |
-
"loss": 1.0398,
|
773 |
-
"step": 11100
|
774 |
-
},
|
775 |
-
{
|
776 |
-
"epoch": 0.82,
|
777 |
-
"learning_rate": 4.769893111638954e-05,
|
778 |
-
"loss": 1.0308,
|
779 |
-
"step": 11200
|
780 |
-
},
|
781 |
-
{
|
782 |
-
"epoch": 0.83,
|
783 |
-
"learning_rate": 4.7402019002375294e-05,
|
784 |
-
"loss": 1.0309,
|
785 |
-
"step": 11300
|
786 |
-
},
|
787 |
-
{
|
788 |
-
"epoch": 0.84,
|
789 |
-
"learning_rate": 4.710510688836104e-05,
|
790 |
-
"loss": 1.0287,
|
791 |
-
"step": 11400
|
792 |
-
},
|
793 |
-
{
|
794 |
-
"epoch": 0.84,
|
795 |
-
"learning_rate": 4.6808194774346794e-05,
|
796 |
-
"loss": 1.0195,
|
797 |
-
"step": 11500
|
798 |
-
},
|
799 |
-
{
|
800 |
-
"epoch": 0.85,
|
801 |
-
"learning_rate": 4.651128266033254e-05,
|
802 |
-
"loss": 1.0292,
|
803 |
-
"step": 11600
|
804 |
-
},
|
805 |
-
{
|
806 |
-
"epoch": 0.86,
|
807 |
-
"learning_rate": 4.621437054631828e-05,
|
808 |
-
"loss": 1.0147,
|
809 |
-
"step": 11700
|
810 |
-
},
|
811 |
-
{
|
812 |
-
"epoch": 0.87,
|
813 |
-
"learning_rate": 4.5917458432304034e-05,
|
814 |
-
"loss": 1.0242,
|
815 |
-
"step": 11800
|
816 |
-
},
|
817 |
-
{
|
818 |
-
"epoch": 0.87,
|
819 |
-
"learning_rate": 4.562054631828978e-05,
|
820 |
-
"loss": 1.029,
|
821 |
-
"step": 11900
|
822 |
-
},
|
823 |
-
{
|
824 |
-
"epoch": 0.88,
|
825 |
-
"learning_rate": 4.5326603325415675e-05,
|
826 |
-
"loss": 1.0193,
|
827 |
-
"step": 12000
|
828 |
-
},
|
829 |
-
{
|
830 |
-
"epoch": 0.88,
|
831 |
-
"eval_loss": 0.22122837603092194,
|
832 |
-
"eval_runtime": 981.4673,
|
833 |
-
"eval_samples_per_second": 16.309,
|
834 |
-
"eval_steps_per_second": 2.039,
|
835 |
-
"eval_wer": 0.23376215448486834,
|
836 |
-
"step": 12000
|
837 |
-
},
|
838 |
-
{
|
839 |
-
"epoch": 0.89,
|
840 |
-
"learning_rate": 4.502969121140143e-05,
|
841 |
-
"loss": 1.0249,
|
842 |
-
"step": 12100
|
843 |
-
},
|
844 |
-
{
|
845 |
-
"epoch": 0.9,
|
846 |
-
"learning_rate": 4.473277909738717e-05,
|
847 |
-
"loss": 1.0165,
|
848 |
-
"step": 12200
|
849 |
-
},
|
850 |
-
{
|
851 |
-
"epoch": 0.9,
|
852 |
-
"learning_rate": 4.4435866983372915e-05,
|
853 |
-
"loss": 1.0303,
|
854 |
-
"step": 12300
|
855 |
-
},
|
856 |
-
{
|
857 |
-
"epoch": 0.91,
|
858 |
-
"learning_rate": 4.413895486935867e-05,
|
859 |
-
"loss": 1.0295,
|
860 |
-
"step": 12400
|
861 |
-
},
|
862 |
-
{
|
863 |
-
"epoch": 0.92,
|
864 |
-
"learning_rate": 4.3842042755344415e-05,
|
865 |
-
"loss": 1.0112,
|
866 |
-
"step": 12500
|
867 |
-
},
|
868 |
-
{
|
869 |
-
"epoch": 0.92,
|
870 |
-
"learning_rate": 4.35480997624703e-05,
|
871 |
-
"loss": 1.0056,
|
872 |
-
"step": 12600
|
873 |
-
},
|
874 |
-
{
|
875 |
-
"epoch": 0.93,
|
876 |
-
"learning_rate": 4.325118764845605e-05,
|
877 |
-
"loss": 1.0108,
|
878 |
-
"step": 12700
|
879 |
-
},
|
880 |
-
{
|
881 |
-
"epoch": 0.94,
|
882 |
-
"learning_rate": 4.29542755344418e-05,
|
883 |
-
"loss": 1.0133,
|
884 |
-
"step": 12800
|
885 |
-
},
|
886 |
-
{
|
887 |
-
"epoch": 0.95,
|
888 |
-
"learning_rate": 4.265736342042755e-05,
|
889 |
-
"loss": 1.0063,
|
890 |
-
"step": 12900
|
891 |
-
},
|
892 |
-
{
|
893 |
-
"epoch": 0.95,
|
894 |
-
"learning_rate": 4.23604513064133e-05,
|
895 |
-
"loss": 1.0077,
|
896 |
-
"step": 13000
|
897 |
-
},
|
898 |
-
{
|
899 |
-
"epoch": 0.95,
|
900 |
-
"eval_loss": 0.21520280838012695,
|
901 |
-
"eval_runtime": 983.9086,
|
902 |
-
"eval_samples_per_second": 16.269,
|
903 |
-
"eval_steps_per_second": 2.034,
|
904 |
-
"eval_wer": 0.22689282202556538,
|
905 |
-
"step": 13000
|
906 |
-
},
|
907 |
-
{
|
908 |
-
"epoch": 0.96,
|
909 |
-
"learning_rate": 4.206353919239904e-05,
|
910 |
-
"loss": 1.0085,
|
911 |
-
"step": 13100
|
912 |
-
},
|
913 |
-
{
|
914 |
-
"epoch": 0.97,
|
915 |
-
"learning_rate": 4.176662707838479e-05,
|
916 |
-
"loss": 1.011,
|
917 |
-
"step": 13200
|
918 |
-
},
|
919 |
-
{
|
920 |
-
"epoch": 0.98,
|
921 |
-
"learning_rate": 4.146971496437054e-05,
|
922 |
-
"loss": 1.0131,
|
923 |
-
"step": 13300
|
924 |
-
},
|
925 |
-
{
|
926 |
-
"epoch": 0.98,
|
927 |
-
"learning_rate": 4.117280285035629e-05,
|
928 |
-
"loss": 0.998,
|
929 |
-
"step": 13400
|
930 |
-
},
|
931 |
-
{
|
932 |
-
"epoch": 0.99,
|
933 |
-
"learning_rate": 4.0875890736342043e-05,
|
934 |
-
"loss": 1.0002,
|
935 |
-
"step": 13500
|
936 |
-
},
|
937 |
-
{
|
938 |
-
"epoch": 1.0,
|
939 |
-
"learning_rate": 4.0578978622327783e-05,
|
940 |
-
"loss": 0.9916,
|
941 |
-
"step": 13600
|
942 |
-
},
|
943 |
-
{
|
944 |
-
"epoch": 1.01,
|
945 |
-
"learning_rate": 4.028206650831354e-05,
|
946 |
-
"loss": 0.9662,
|
947 |
-
"step": 13700
|
948 |
-
},
|
949 |
-
{
|
950 |
-
"epoch": 1.01,
|
951 |
-
"learning_rate": 3.9985154394299284e-05,
|
952 |
-
"loss": 0.9758,
|
953 |
-
"step": 13800
|
954 |
-
},
|
955 |
-
{
|
956 |
-
"epoch": 1.02,
|
957 |
-
"learning_rate": 3.968824228028504e-05,
|
958 |
-
"loss": 1.013,
|
959 |
-
"step": 13900
|
960 |
-
},
|
961 |
-
{
|
962 |
-
"epoch": 1.03,
|
963 |
-
"learning_rate": 3.939133016627078e-05,
|
964 |
-
"loss": 1.0004,
|
965 |
-
"step": 14000
|
966 |
-
},
|
967 |
-
{
|
968 |
-
"epoch": 1.03,
|
969 |
-
"eval_loss": 0.2093251347541809,
|
970 |
-
"eval_runtime": 986.9604,
|
971 |
-
"eval_samples_per_second": 16.218,
|
972 |
-
"eval_steps_per_second": 2.027,
|
973 |
-
"eval_wer": 0.22069949743253578,
|
974 |
-
"step": 14000
|
975 |
-
},
|
976 |
-
{
|
977 |
-
"epoch": 1.03,
|
978 |
-
"learning_rate": 3.9094418052256524e-05,
|
979 |
-
"loss": 0.9852,
|
980 |
-
"step": 14100
|
981 |
-
},
|
982 |
-
{
|
983 |
-
"epoch": 1.04,
|
984 |
-
"learning_rate": 3.879750593824228e-05,
|
985 |
-
"loss": 0.9765,
|
986 |
-
"step": 14200
|
987 |
-
},
|
988 |
-
{
|
989 |
-
"epoch": 1.05,
|
990 |
-
"learning_rate": 3.8500593824228025e-05,
|
991 |
-
"loss": 0.9978,
|
992 |
-
"step": 14300
|
993 |
-
},
|
994 |
-
{
|
995 |
-
"epoch": 1.06,
|
996 |
-
"learning_rate": 3.820368171021378e-05,
|
997 |
-
"loss": 0.9807,
|
998 |
-
"step": 14400
|
999 |
-
},
|
1000 |
-
{
|
1001 |
-
"epoch": 1.06,
|
1002 |
-
"learning_rate": 3.790676959619952e-05,
|
1003 |
-
"loss": 0.9988,
|
1004 |
-
"step": 14500
|
1005 |
-
},
|
1006 |
-
{
|
1007 |
-
"epoch": 1.07,
|
1008 |
-
"learning_rate": 3.7609857482185265e-05,
|
1009 |
-
"loss": 0.977,
|
1010 |
-
"step": 14600
|
1011 |
-
},
|
1012 |
-
{
|
1013 |
-
"epoch": 1.08,
|
1014 |
-
"learning_rate": 3.731294536817102e-05,
|
1015 |
-
"loss": 0.9735,
|
1016 |
-
"step": 14700
|
1017 |
-
},
|
1018 |
-
{
|
1019 |
-
"epoch": 1.09,
|
1020 |
-
"learning_rate": 3.7016033254156765e-05,
|
1021 |
-
"loss": 0.9767,
|
1022 |
-
"step": 14800
|
1023 |
-
},
|
1024 |
-
{
|
1025 |
-
"epoch": 1.09,
|
1026 |
-
"learning_rate": 3.671912114014251e-05,
|
1027 |
-
"loss": 0.9555,
|
1028 |
-
"step": 14900
|
1029 |
-
},
|
1030 |
-
{
|
1031 |
-
"epoch": 1.1,
|
1032 |
-
"learning_rate": 3.6422209026128266e-05,
|
1033 |
-
"loss": 0.9649,
|
1034 |
-
"step": 15000
|
1035 |
-
},
|
1036 |
-
{
|
1037 |
-
"epoch": 1.1,
|
1038 |
-
"eval_loss": 0.19932541251182556,
|
1039 |
-
"eval_runtime": 986.5773,
|
1040 |
-
"eval_samples_per_second": 16.225,
|
1041 |
-
"eval_steps_per_second": 2.028,
|
1042 |
-
"eval_wer": 0.21130367092756475,
|
1043 |
-
"step": 15000
|
1044 |
-
},
|
1045 |
-
{
|
1046 |
-
"epoch": 1.11,
|
1047 |
-
"learning_rate": 3.612529691211401e-05,
|
1048 |
-
"loss": 0.9608,
|
1049 |
-
"step": 15100
|
1050 |
-
},
|
1051 |
-
{
|
1052 |
-
"epoch": 1.12,
|
1053 |
-
"learning_rate": 3.582838479809976e-05,
|
1054 |
-
"loss": 0.9549,
|
1055 |
-
"step": 15200
|
1056 |
-
},
|
1057 |
-
{
|
1058 |
-
"epoch": 1.12,
|
1059 |
-
"learning_rate": 3.5531472684085506e-05,
|
1060 |
-
"loss": 0.9636,
|
1061 |
-
"step": 15300
|
1062 |
-
},
|
1063 |
-
{
|
1064 |
-
"epoch": 1.13,
|
1065 |
-
"learning_rate": 3.523456057007125e-05,
|
1066 |
-
"loss": 0.9605,
|
1067 |
-
"step": 15400
|
1068 |
-
},
|
1069 |
-
{
|
1070 |
-
"epoch": 1.14,
|
1071 |
-
"learning_rate": 3.4937648456057006e-05,
|
1072 |
-
"loss": 0.962,
|
1073 |
-
"step": 15500
|
1074 |
-
},
|
1075 |
-
{
|
1076 |
-
"epoch": 1.14,
|
1077 |
-
"learning_rate": 3.464073634204275e-05,
|
1078 |
-
"loss": 0.9565,
|
1079 |
-
"step": 15600
|
1080 |
-
},
|
1081 |
-
{
|
1082 |
-
"epoch": 1.15,
|
1083 |
-
"learning_rate": 3.43438242280285e-05,
|
1084 |
-
"loss": 0.9609,
|
1085 |
-
"step": 15700
|
1086 |
-
},
|
1087 |
-
{
|
1088 |
-
"epoch": 1.16,
|
1089 |
-
"learning_rate": 3.404691211401425e-05,
|
1090 |
-
"loss": 0.9552,
|
1091 |
-
"step": 15800
|
1092 |
-
},
|
1093 |
-
{
|
1094 |
-
"epoch": 1.17,
|
1095 |
-
"learning_rate": 3.375e-05,
|
1096 |
-
"loss": 0.9503,
|
1097 |
-
"step": 15900
|
1098 |
-
},
|
1099 |
-
{
|
1100 |
-
"epoch": 1.17,
|
1101 |
-
"learning_rate": 3.345308788598574e-05,
|
1102 |
-
"loss": 0.9509,
|
1103 |
-
"step": 16000
|
1104 |
-
},
|
1105 |
-
{
|
1106 |
-
"epoch": 1.17,
|
1107 |
-
"eval_loss": 0.19342663884162903,
|
1108 |
-
"eval_runtime": 984.1094,
|
1109 |
-
"eval_samples_per_second": 16.265,
|
1110 |
-
"eval_steps_per_second": 2.033,
|
1111 |
-
"eval_wer": 0.20888643067846607,
|
1112 |
-
"step": 16000
|
1113 |
-
},
|
1114 |
-
{
|
1115 |
-
"epoch": 1.18,
|
1116 |
-
"learning_rate": 3.3156175771971494e-05,
|
1117 |
-
"loss": 0.9369,
|
1118 |
-
"step": 16100
|
1119 |
-
},
|
1120 |
-
{
|
1121 |
-
"epoch": 1.19,
|
1122 |
-
"learning_rate": 3.285926365795724e-05,
|
1123 |
-
"loss": 0.9549,
|
1124 |
-
"step": 16200
|
1125 |
-
},
|
1126 |
-
{
|
1127 |
-
"epoch": 1.2,
|
1128 |
-
"learning_rate": 3.256235154394299e-05,
|
1129 |
-
"loss": 0.9503,
|
1130 |
-
"step": 16300
|
1131 |
-
},
|
1132 |
-
{
|
1133 |
-
"epoch": 1.2,
|
1134 |
-
"learning_rate": 3.226543942992874e-05,
|
1135 |
-
"loss": 0.9553,
|
1136 |
-
"step": 16400
|
1137 |
-
},
|
1138 |
-
{
|
1139 |
-
"epoch": 1.21,
|
1140 |
-
"learning_rate": 3.196852731591449e-05,
|
1141 |
-
"loss": 0.9508,
|
1142 |
-
"step": 16500
|
1143 |
-
},
|
1144 |
-
{
|
1145 |
-
"epoch": 1.22,
|
1146 |
-
"learning_rate": 3.1671615201900235e-05,
|
1147 |
-
"loss": 0.9411,
|
1148 |
-
"step": 16600
|
1149 |
-
},
|
1150 |
-
{
|
1151 |
-
"epoch": 1.23,
|
1152 |
-
"learning_rate": 3.137470308788598e-05,
|
1153 |
-
"loss": 0.9435,
|
1154 |
-
"step": 16700
|
1155 |
-
},
|
1156 |
-
{
|
1157 |
-
"epoch": 1.23,
|
1158 |
-
"learning_rate": 3.107779097387173e-05,
|
1159 |
-
"loss": 0.9439,
|
1160 |
-
"step": 16800
|
1161 |
-
},
|
1162 |
-
{
|
1163 |
-
"epoch": 1.24,
|
1164 |
-
"learning_rate": 3.078087885985748e-05,
|
1165 |
-
"loss": 0.946,
|
1166 |
-
"step": 16900
|
1167 |
-
},
|
1168 |
-
{
|
1169 |
-
"epoch": 1.25,
|
1170 |
-
"learning_rate": 3.048396674584323e-05,
|
1171 |
-
"loss": 0.9533,
|
1172 |
-
"step": 17000
|
1173 |
-
},
|
1174 |
-
{
|
1175 |
-
"epoch": 1.25,
|
1176 |
-
"eval_loss": 0.18736572563648224,
|
1177 |
-
"eval_runtime": 984.7341,
|
1178 |
-
"eval_samples_per_second": 16.255,
|
1179 |
-
"eval_steps_per_second": 2.032,
|
1180 |
-
"eval_wer": 0.20231071779744347,
|
1181 |
-
"step": 17000
|
1182 |
-
},
|
1183 |
-
{
|
1184 |
-
"epoch": 1.25,
|
1185 |
-
"learning_rate": 3.018705463182898e-05,
|
1186 |
-
"loss": 0.9322,
|
1187 |
-
"step": 17100
|
1188 |
-
},
|
1189 |
-
{
|
1190 |
-
"epoch": 1.26,
|
1191 |
-
"learning_rate": 2.9890142517814722e-05,
|
1192 |
-
"loss": 0.94,
|
1193 |
-
"step": 17200
|
1194 |
-
},
|
1195 |
-
{
|
1196 |
-
"epoch": 1.27,
|
1197 |
-
"learning_rate": 2.9593230403800473e-05,
|
1198 |
-
"loss": 0.9373,
|
1199 |
-
"step": 17300
|
1200 |
-
},
|
1201 |
-
{
|
1202 |
-
"epoch": 1.28,
|
1203 |
-
"learning_rate": 2.9299287410926363e-05,
|
1204 |
-
"loss": 0.924,
|
1205 |
-
"step": 17400
|
1206 |
-
},
|
1207 |
-
{
|
1208 |
-
"epoch": 1.28,
|
1209 |
-
"learning_rate": 2.9005344418052253e-05,
|
1210 |
-
"loss": 0.9357,
|
1211 |
-
"step": 17500
|
1212 |
-
},
|
1213 |
-
{
|
1214 |
-
"epoch": 1.29,
|
1215 |
-
"learning_rate": 2.8708432304038003e-05,
|
1216 |
-
"loss": 0.9351,
|
1217 |
-
"step": 17600
|
1218 |
-
},
|
1219 |
-
{
|
1220 |
-
"epoch": 1.3,
|
1221 |
-
"learning_rate": 2.841152019002375e-05,
|
1222 |
-
"loss": 0.9371,
|
1223 |
-
"step": 17700
|
1224 |
-
},
|
1225 |
-
{
|
1226 |
-
"epoch": 1.31,
|
1227 |
-
"learning_rate": 2.81146080760095e-05,
|
1228 |
-
"loss": 0.9253,
|
1229 |
-
"step": 17800
|
1230 |
-
},
|
1231 |
-
{
|
1232 |
-
"epoch": 1.31,
|
1233 |
-
"learning_rate": 2.7817695961995246e-05,
|
1234 |
-
"loss": 0.9264,
|
1235 |
-
"step": 17900
|
1236 |
-
},
|
1237 |
-
{
|
1238 |
-
"epoch": 1.32,
|
1239 |
-
"learning_rate": 2.7520783847980997e-05,
|
1240 |
-
"loss": 0.9248,
|
1241 |
-
"step": 18000
|
1242 |
-
},
|
1243 |
-
{
|
1244 |
-
"epoch": 1.32,
|
1245 |
-
"eval_loss": 0.1818237155675888,
|
1246 |
-
"eval_runtime": 1114.2718,
|
1247 |
-
"eval_samples_per_second": 14.365,
|
1248 |
-
"eval_steps_per_second": 1.796,
|
1249 |
-
"eval_wer": 0.19742843876324703,
|
1250 |
-
"step": 18000
|
1251 |
-
},
|
1252 |
-
{
|
1253 |
-
"epoch": 1.33,
|
1254 |
-
"learning_rate": 2.722387173396674e-05,
|
1255 |
-
"loss": 0.9448,
|
1256 |
-
"step": 18100
|
1257 |
-
},
|
1258 |
-
{
|
1259 |
-
"epoch": 1.34,
|
1260 |
-
"learning_rate": 2.692695961995249e-05,
|
1261 |
-
"loss": 0.9284,
|
1262 |
-
"step": 18200
|
1263 |
-
},
|
1264 |
-
{
|
1265 |
-
"epoch": 1.34,
|
1266 |
-
"learning_rate": 2.663004750593824e-05,
|
1267 |
-
"loss": 0.9141,
|
1268 |
-
"step": 18300
|
1269 |
-
},
|
1270 |
-
{
|
1271 |
-
"epoch": 1.35,
|
1272 |
-
"learning_rate": 2.6333135391923987e-05,
|
1273 |
-
"loss": 0.9117,
|
1274 |
-
"step": 18400
|
1275 |
-
},
|
1276 |
-
{
|
1277 |
-
"epoch": 1.36,
|
1278 |
-
"learning_rate": 2.6036223277909737e-05,
|
1279 |
-
"loss": 0.917,
|
1280 |
-
"step": 18500
|
1281 |
-
},
|
1282 |
-
{
|
1283 |
-
"epoch": 1.36,
|
1284 |
-
"learning_rate": 2.5739311163895484e-05,
|
1285 |
-
"loss": 0.9165,
|
1286 |
-
"step": 18600
|
1287 |
-
},
|
1288 |
-
{
|
1289 |
-
"epoch": 1.37,
|
1290 |
-
"learning_rate": 2.5442399049881234e-05,
|
1291 |
-
"loss": 0.9099,
|
1292 |
-
"step": 18700
|
1293 |
-
},
|
1294 |
-
{
|
1295 |
-
"epoch": 1.38,
|
1296 |
-
"learning_rate": 2.5145486935866978e-05,
|
1297 |
-
"loss": 0.9022,
|
1298 |
-
"step": 18800
|
1299 |
-
},
|
1300 |
-
{
|
1301 |
-
"epoch": 1.39,
|
1302 |
-
"learning_rate": 2.4848574821852728e-05,
|
1303 |
-
"loss": 0.9246,
|
1304 |
-
"step": 18900
|
1305 |
-
},
|
1306 |
-
{
|
1307 |
-
"epoch": 1.39,
|
1308 |
-
"learning_rate": 2.4551662707838478e-05,
|
1309 |
-
"loss": 0.9216,
|
1310 |
-
"step": 19000
|
1311 |
-
},
|
1312 |
-
{
|
1313 |
-
"epoch": 1.39,
|
1314 |
-
"eval_loss": 0.17756715416908264,
|
1315 |
-
"eval_runtime": 1032.2412,
|
1316 |
-
"eval_samples_per_second": 15.507,
|
1317 |
-
"eval_steps_per_second": 1.939,
|
1318 |
-
"eval_wer": 0.19256664481590735,
|
1319 |
-
"step": 19000
|
1320 |
-
},
|
1321 |
-
{
|
1322 |
-
"epoch": 1.4,
|
1323 |
-
"learning_rate": 2.4254750593824225e-05,
|
1324 |
-
"loss": 0.9142,
|
1325 |
-
"step": 19100
|
1326 |
-
},
|
1327 |
-
{
|
1328 |
-
"epoch": 1.41,
|
1329 |
-
"learning_rate": 2.3957838479809975e-05,
|
1330 |
-
"loss": 0.9275,
|
1331 |
-
"step": 19200
|
1332 |
-
},
|
1333 |
-
{
|
1334 |
-
"epoch": 1.42,
|
1335 |
-
"learning_rate": 2.3660926365795722e-05,
|
1336 |
-
"loss": 0.9132,
|
1337 |
-
"step": 19300
|
1338 |
-
},
|
1339 |
-
{
|
1340 |
-
"epoch": 1.42,
|
1341 |
-
"learning_rate": 2.3364014251781472e-05,
|
1342 |
-
"loss": 0.9111,
|
1343 |
-
"step": 19400
|
1344 |
-
},
|
1345 |
-
{
|
1346 |
-
"epoch": 1.43,
|
1347 |
-
"learning_rate": 2.3067102137767216e-05,
|
1348 |
-
"loss": 0.8974,
|
1349 |
-
"step": 19500
|
1350 |
-
},
|
1351 |
-
{
|
1352 |
-
"epoch": 1.44,
|
1353 |
-
"learning_rate": 2.2770190023752966e-05,
|
1354 |
-
"loss": 0.9013,
|
1355 |
-
"step": 19600
|
1356 |
-
},
|
1357 |
-
{
|
1358 |
-
"epoch": 1.45,
|
1359 |
-
"learning_rate": 2.2473277909738716e-05,
|
1360 |
-
"loss": 0.9093,
|
1361 |
-
"step": 19700
|
1362 |
-
},
|
1363 |
-
{
|
1364 |
-
"epoch": 1.45,
|
1365 |
-
"learning_rate": 2.2176365795724463e-05,
|
1366 |
-
"loss": 0.8926,
|
1367 |
-
"step": 19800
|
1368 |
-
},
|
1369 |
-
{
|
1370 |
-
"epoch": 1.46,
|
1371 |
-
"learning_rate": 2.1879453681710213e-05,
|
1372 |
-
"loss": 0.9026,
|
1373 |
-
"step": 19900
|
1374 |
-
},
|
1375 |
-
{
|
1376 |
-
"epoch": 1.47,
|
1377 |
-
"learning_rate": 2.158254156769596e-05,
|
1378 |
-
"loss": 0.8964,
|
1379 |
-
"step": 20000
|
1380 |
-
},
|
1381 |
-
{
|
1382 |
-
"epoch": 1.47,
|
1383 |
-
"eval_loss": 0.1722368746995926,
|
1384 |
-
"eval_runtime": 1019.2936,
|
1385 |
-
"eval_samples_per_second": 15.704,
|
1386 |
-
"eval_steps_per_second": 1.963,
|
1387 |
-
"eval_wer": 0.19043619578280346,
|
1388 |
-
"step": 20000
|
1389 |
-
},
|
1390 |
-
{
|
1391 |
-
"epoch": 1.47,
|
1392 |
-
"learning_rate": 2.128859857482185e-05,
|
1393 |
-
"loss": 0.8906,
|
1394 |
-
"step": 20100
|
1395 |
-
},
|
1396 |
-
{
|
1397 |
-
"epoch": 1.48,
|
1398 |
-
"learning_rate": 2.09916864608076e-05,
|
1399 |
-
"loss": 0.8878,
|
1400 |
-
"step": 20200
|
1401 |
-
},
|
1402 |
-
{
|
1403 |
-
"epoch": 1.49,
|
1404 |
-
"learning_rate": 2.0694774346793347e-05,
|
1405 |
-
"loss": 0.9024,
|
1406 |
-
"step": 20300
|
1407 |
-
},
|
1408 |
-
{
|
1409 |
-
"epoch": 1.5,
|
1410 |
-
"learning_rate": 2.0397862232779097e-05,
|
1411 |
-
"loss": 0.8903,
|
1412 |
-
"step": 20400
|
1413 |
-
},
|
1414 |
-
{
|
1415 |
-
"epoch": 1.5,
|
1416 |
-
"learning_rate": 2.0100950118764844e-05,
|
1417 |
-
"loss": 0.8843,
|
1418 |
-
"step": 20500
|
1419 |
-
},
|
1420 |
-
{
|
1421 |
-
"epoch": 1.51,
|
1422 |
-
"learning_rate": 1.9804038004750594e-05,
|
1423 |
-
"loss": 0.8911,
|
1424 |
-
"step": 20600
|
1425 |
-
},
|
1426 |
-
{
|
1427 |
-
"epoch": 1.52,
|
1428 |
-
"learning_rate": 1.9507125890736337e-05,
|
1429 |
-
"loss": 0.8795,
|
1430 |
-
"step": 20700
|
1431 |
-
},
|
1432 |
-
{
|
1433 |
-
"epoch": 1.53,
|
1434 |
-
"learning_rate": 1.9210213776722087e-05,
|
1435 |
-
"loss": 0.8777,
|
1436 |
-
"step": 20800
|
1437 |
-
},
|
1438 |
-
{
|
1439 |
-
"epoch": 1.53,
|
1440 |
-
"learning_rate": 1.8913301662707838e-05,
|
1441 |
-
"loss": 0.889,
|
1442 |
-
"step": 20900
|
1443 |
-
},
|
1444 |
-
{
|
1445 |
-
"epoch": 1.54,
|
1446 |
-
"learning_rate": 1.8616389548693584e-05,
|
1447 |
-
"loss": 0.8941,
|
1448 |
-
"step": 21000
|
1449 |
-
},
|
1450 |
-
{
|
1451 |
-
"epoch": 1.54,
|
1452 |
-
"eval_loss": 0.16895848512649536,
|
1453 |
-
"eval_runtime": 1022.9987,
|
1454 |
-
"eval_samples_per_second": 15.647,
|
1455 |
-
"eval_steps_per_second": 1.956,
|
1456 |
-
"eval_wer": 0.18521932699661314,
|
1457 |
-
"step": 21000
|
1458 |
-
},
|
1459 |
-
{
|
1460 |
-
"epoch": 1.55,
|
1461 |
-
"learning_rate": 1.831947743467933e-05,
|
1462 |
-
"loss": 0.882,
|
1463 |
-
"step": 21100
|
1464 |
-
},
|
1465 |
-
{
|
1466 |
-
"epoch": 1.56,
|
1467 |
-
"learning_rate": 1.802256532066508e-05,
|
1468 |
-
"loss": 0.8801,
|
1469 |
-
"step": 21200
|
1470 |
-
},
|
1471 |
-
{
|
1472 |
-
"epoch": 1.56,
|
1473 |
-
"learning_rate": 1.772565320665083e-05,
|
1474 |
-
"loss": 0.8718,
|
1475 |
-
"step": 21300
|
1476 |
-
},
|
1477 |
-
{
|
1478 |
-
"epoch": 1.57,
|
1479 |
-
"learning_rate": 1.742874109263658e-05,
|
1480 |
-
"loss": 0.8904,
|
1481 |
-
"step": 21400
|
1482 |
-
},
|
1483 |
-
{
|
1484 |
-
"epoch": 1.58,
|
1485 |
-
"learning_rate": 1.7131828978622325e-05,
|
1486 |
-
"loss": 0.8729,
|
1487 |
-
"step": 21500
|
1488 |
-
},
|
1489 |
-
{
|
1490 |
-
"epoch": 1.58,
|
1491 |
-
"learning_rate": 1.6834916864608075e-05,
|
1492 |
-
"loss": 0.8722,
|
1493 |
-
"step": 21600
|
1494 |
-
},
|
1495 |
-
{
|
1496 |
-
"epoch": 1.59,
|
1497 |
-
"learning_rate": 1.6538004750593822e-05,
|
1498 |
-
"loss": 0.8739,
|
1499 |
-
"step": 21700
|
1500 |
-
},
|
1501 |
-
{
|
1502 |
-
"epoch": 1.6,
|
1503 |
-
"learning_rate": 1.624109263657957e-05,
|
1504 |
-
"loss": 0.8635,
|
1505 |
-
"step": 21800
|
1506 |
-
},
|
1507 |
-
{
|
1508 |
-
"epoch": 1.61,
|
1509 |
-
"learning_rate": 1.594418052256532e-05,
|
1510 |
-
"loss": 0.8767,
|
1511 |
-
"step": 21900
|
1512 |
-
},
|
1513 |
-
{
|
1514 |
-
"epoch": 1.61,
|
1515 |
-
"learning_rate": 1.564726840855107e-05,
|
1516 |
-
"loss": 0.871,
|
1517 |
-
"step": 22000
|
1518 |
-
},
|
1519 |
-
{
|
1520 |
-
"epoch": 1.61,
|
1521 |
-
"eval_loss": 0.16269078850746155,
|
1522 |
-
"eval_runtime": 1042.6643,
|
1523 |
-
"eval_samples_per_second": 15.352,
|
1524 |
-
"eval_steps_per_second": 1.919,
|
1525 |
-
"eval_wer": 0.17805637495902982,
|
1526 |
-
"step": 22000
|
1527 |
-
},
|
1528 |
-
{
|
1529 |
-
"epoch": 1.62,
|
1530 |
-
"learning_rate": 1.5350356294536816e-05,
|
1531 |
-
"loss": 0.8663,
|
1532 |
-
"step": 22100
|
1533 |
-
},
|
1534 |
-
{
|
1535 |
-
"epoch": 1.63,
|
1536 |
-
"learning_rate": 1.5056413301662706e-05,
|
1537 |
-
"loss": 0.8732,
|
1538 |
-
"step": 22200
|
1539 |
-
},
|
1540 |
-
{
|
1541 |
-
"epoch": 1.64,
|
1542 |
-
"learning_rate": 1.4759501187648455e-05,
|
1543 |
-
"loss": 0.8625,
|
1544 |
-
"step": 22300
|
1545 |
-
},
|
1546 |
-
{
|
1547 |
-
"epoch": 1.64,
|
1548 |
-
"learning_rate": 1.4462589073634203e-05,
|
1549 |
-
"loss": 0.854,
|
1550 |
-
"step": 22400
|
1551 |
-
},
|
1552 |
-
{
|
1553 |
-
"epoch": 1.65,
|
1554 |
-
"learning_rate": 1.416567695961995e-05,
|
1555 |
-
"loss": 0.8692,
|
1556 |
-
"step": 22500
|
1557 |
-
},
|
1558 |
-
{
|
1559 |
-
"epoch": 1.66,
|
1560 |
-
"learning_rate": 1.38687648456057e-05,
|
1561 |
-
"loss": 0.8477,
|
1562 |
-
"step": 22600
|
1563 |
-
},
|
1564 |
-
{
|
1565 |
-
"epoch": 1.67,
|
1566 |
-
"learning_rate": 1.3571852731591449e-05,
|
1567 |
-
"loss": 0.8494,
|
1568 |
-
"step": 22700
|
1569 |
-
},
|
1570 |
-
{
|
1571 |
-
"epoch": 1.67,
|
1572 |
-
"learning_rate": 1.3277909738717339e-05,
|
1573 |
-
"loss": 0.8599,
|
1574 |
-
"step": 22800
|
1575 |
-
},
|
1576 |
-
{
|
1577 |
-
"epoch": 1.68,
|
1578 |
-
"learning_rate": 1.2980997624703087e-05,
|
1579 |
-
"loss": 0.863,
|
1580 |
-
"step": 22900
|
1581 |
-
},
|
1582 |
-
{
|
1583 |
-
"epoch": 1.69,
|
1584 |
-
"learning_rate": 1.2684085510688834e-05,
|
1585 |
-
"loss": 0.847,
|
1586 |
-
"step": 23000
|
1587 |
-
},
|
1588 |
-
{
|
1589 |
-
"epoch": 1.69,
|
1590 |
-
"eval_loss": 0.15907420217990875,
|
1591 |
-
"eval_runtime": 1036.4519,
|
1592 |
-
"eval_samples_per_second": 15.444,
|
1593 |
-
"eval_steps_per_second": 1.931,
|
1594 |
-
"eval_wer": 0.17514066426308314,
|
1595 |
-
"step": 23000
|
1596 |
-
},
|
1597 |
-
{
|
1598 |
-
"epoch": 1.69,
|
1599 |
-
"learning_rate": 1.2387173396674582e-05,
|
1600 |
-
"loss": 0.8487,
|
1601 |
-
"step": 23100
|
1602 |
-
},
|
1603 |
-
{
|
1604 |
-
"epoch": 1.7,
|
1605 |
-
"learning_rate": 1.2090261282660333e-05,
|
1606 |
-
"loss": 0.8637,
|
1607 |
-
"step": 23200
|
1608 |
-
},
|
1609 |
-
{
|
1610 |
-
"epoch": 1.71,
|
1611 |
-
"learning_rate": 1.1793349168646081e-05,
|
1612 |
-
"loss": 0.8456,
|
1613 |
-
"step": 23300
|
1614 |
-
},
|
1615 |
-
{
|
1616 |
-
"epoch": 1.72,
|
1617 |
-
"learning_rate": 1.1496437054631828e-05,
|
1618 |
-
"loss": 0.8518,
|
1619 |
-
"step": 23400
|
1620 |
-
},
|
1621 |
-
{
|
1622 |
-
"epoch": 1.72,
|
1623 |
-
"learning_rate": 1.1199524940617576e-05,
|
1624 |
-
"loss": 0.8456,
|
1625 |
-
"step": 23500
|
1626 |
-
},
|
1627 |
-
{
|
1628 |
-
"epoch": 1.73,
|
1629 |
-
"learning_rate": 1.0902612826603325e-05,
|
1630 |
-
"loss": 0.8349,
|
1631 |
-
"step": 23600
|
1632 |
-
},
|
1633 |
-
{
|
1634 |
-
"epoch": 1.74,
|
1635 |
-
"learning_rate": 1.0605700712589072e-05,
|
1636 |
-
"loss": 0.8426,
|
1637 |
-
"step": 23700
|
1638 |
-
},
|
1639 |
-
{
|
1640 |
-
"epoch": 1.75,
|
1641 |
-
"learning_rate": 1.030878859857482e-05,
|
1642 |
-
"loss": 0.8503,
|
1643 |
-
"step": 23800
|
1644 |
-
},
|
1645 |
-
{
|
1646 |
-
"epoch": 1.75,
|
1647 |
-
"learning_rate": 1.001187648456057e-05,
|
1648 |
-
"loss": 0.844,
|
1649 |
-
"step": 23900
|
1650 |
-
},
|
1651 |
-
{
|
1652 |
-
"epoch": 1.76,
|
1653 |
-
"learning_rate": 9.714964370546319e-06,
|
1654 |
-
"loss": 0.822,
|
1655 |
-
"step": 24000
|
1656 |
-
},
|
1657 |
-
{
|
1658 |
-
"epoch": 1.76,
|
1659 |
-
"eval_loss": 0.1550702005624771,
|
1660 |
-
"eval_runtime": 1027.8442,
|
1661 |
-
"eval_samples_per_second": 15.573,
|
1662 |
-
"eval_steps_per_second": 1.947,
|
1663 |
-
"eval_wer": 0.17010133289631815,
|
1664 |
-
"step": 24000
|
1665 |
-
},
|
1666 |
-
{
|
1667 |
-
"epoch": 1.77,
|
1668 |
-
"learning_rate": 9.418052256532066e-06,
|
1669 |
-
"loss": 0.8452,
|
1670 |
-
"step": 24100
|
1671 |
-
},
|
1672 |
-
{
|
1673 |
-
"epoch": 1.78,
|
1674 |
-
"learning_rate": 9.121140142517814e-06,
|
1675 |
-
"loss": 0.843,
|
1676 |
-
"step": 24200
|
1677 |
-
},
|
1678 |
-
{
|
1679 |
-
"epoch": 1.78,
|
1680 |
-
"learning_rate": 8.824228028503563e-06,
|
1681 |
-
"loss": 0.8429,
|
1682 |
-
"step": 24300
|
1683 |
-
},
|
1684 |
-
{
|
1685 |
-
"epoch": 1.79,
|
1686 |
-
"learning_rate": 8.527315914489311e-06,
|
1687 |
-
"loss": 0.8513,
|
1688 |
-
"step": 24400
|
1689 |
-
},
|
1690 |
-
{
|
1691 |
-
"epoch": 1.8,
|
1692 |
-
"learning_rate": 8.23040380047506e-06,
|
1693 |
-
"loss": 0.834,
|
1694 |
-
"step": 24500
|
1695 |
-
},
|
1696 |
-
{
|
1697 |
-
"epoch": 1.8,
|
1698 |
-
"learning_rate": 7.933491686460806e-06,
|
1699 |
-
"loss": 0.8383,
|
1700 |
-
"step": 24600
|
1701 |
-
},
|
1702 |
-
{
|
1703 |
-
"epoch": 1.81,
|
1704 |
-
"learning_rate": 7.636579572446555e-06,
|
1705 |
-
"loss": 0.8294,
|
1706 |
-
"step": 24700
|
1707 |
-
},
|
1708 |
-
{
|
1709 |
-
"epoch": 1.82,
|
1710 |
-
"learning_rate": 7.339667458432303e-06,
|
1711 |
-
"loss": 0.8335,
|
1712 |
-
"step": 24800
|
1713 |
-
},
|
1714 |
-
{
|
1715 |
-
"epoch": 1.83,
|
1716 |
-
"learning_rate": 7.042755344418052e-06,
|
1717 |
-
"loss": 0.8207,
|
1718 |
-
"step": 24900
|
1719 |
-
},
|
1720 |
-
{
|
1721 |
-
"epoch": 1.83,
|
1722 |
-
"learning_rate": 6.745843230403799e-06,
|
1723 |
-
"loss": 0.8188,
|
1724 |
-
"step": 25000
|
1725 |
-
},
|
1726 |
-
{
|
1727 |
-
"epoch": 1.83,
|
1728 |
-
"eval_loss": 0.1527515947818756,
|
1729 |
-
"eval_runtime": 1034.5359,
|
1730 |
-
"eval_samples_per_second": 15.473,
|
1731 |
-
"eval_steps_per_second": 1.934,
|
1732 |
-
"eval_wer": 0.16672812192723696,
|
1733 |
-
"step": 25000
|
1734 |
-
},
|
1735 |
-
{
|
1736 |
-
"epoch": 1.84,
|
1737 |
-
"learning_rate": 6.448931116389549e-06,
|
1738 |
-
"loss": 0.8289,
|
1739 |
-
"step": 25100
|
1740 |
-
},
|
1741 |
-
{
|
1742 |
-
"epoch": 1.85,
|
1743 |
-
"learning_rate": 6.152019002375296e-06,
|
1744 |
-
"loss": 0.8306,
|
1745 |
-
"step": 25200
|
1746 |
-
},
|
1747 |
-
{
|
1748 |
-
"epoch": 1.86,
|
1749 |
-
"learning_rate": 5.855106888361045e-06,
|
1750 |
-
"loss": 0.8335,
|
1751 |
-
"step": 25300
|
1752 |
-
},
|
1753 |
-
{
|
1754 |
-
"epoch": 1.86,
|
1755 |
-
"learning_rate": 5.5581947743467925e-06,
|
1756 |
-
"loss": 0.8291,
|
1757 |
-
"step": 25400
|
1758 |
-
},
|
1759 |
-
{
|
1760 |
-
"epoch": 1.87,
|
1761 |
-
"learning_rate": 5.261282660332541e-06,
|
1762 |
-
"loss": 0.8206,
|
1763 |
-
"step": 25500
|
1764 |
-
},
|
1765 |
-
{
|
1766 |
-
"epoch": 1.88,
|
1767 |
-
"learning_rate": 4.9643705463182895e-06,
|
1768 |
-
"loss": 0.8242,
|
1769 |
-
"step": 25600
|
1770 |
-
},
|
1771 |
-
{
|
1772 |
-
"epoch": 1.89,
|
1773 |
-
"learning_rate": 4.667458432304038e-06,
|
1774 |
-
"loss": 0.8189,
|
1775 |
-
"step": 25700
|
1776 |
-
},
|
1777 |
-
{
|
1778 |
-
"epoch": 1.89,
|
1779 |
-
"learning_rate": 4.370546318289786e-06,
|
1780 |
-
"loss": 0.8275,
|
1781 |
-
"step": 25800
|
1782 |
-
},
|
1783 |
-
{
|
1784 |
-
"epoch": 1.9,
|
1785 |
-
"learning_rate": 4.073634204275534e-06,
|
1786 |
-
"loss": 0.8142,
|
1787 |
-
"step": 25900
|
1788 |
-
},
|
1789 |
-
{
|
1790 |
-
"epoch": 1.91,
|
1791 |
-
"learning_rate": 3.776722090261282e-06,
|
1792 |
-
"loss": 0.8305,
|
1793 |
-
"step": 26000
|
1794 |
-
},
|
1795 |
-
{
|
1796 |
-
"epoch": 1.91,
|
1797 |
-
"eval_loss": 0.14921718835830688,
|
1798 |
-
"eval_runtime": 1026.6478,
|
1799 |
-
"eval_samples_per_second": 15.592,
|
1800 |
-
"eval_steps_per_second": 1.949,
|
1801 |
-
"eval_wer": 0.16312957500273134,
|
1802 |
-
"step": 26000
|
1803 |
-
},
|
1804 |
-
{
|
1805 |
-
"epoch": 1.91,
|
1806 |
-
"learning_rate": 3.4798099762470307e-06,
|
1807 |
-
"loss": 0.833,
|
1808 |
-
"step": 26100
|
1809 |
-
},
|
1810 |
-
{
|
1811 |
-
"epoch": 1.92,
|
1812 |
-
"learning_rate": 3.1828978622327788e-06,
|
1813 |
-
"loss": 0.8175,
|
1814 |
-
"step": 26200
|
1815 |
-
},
|
1816 |
-
{
|
1817 |
-
"epoch": 1.93,
|
1818 |
-
"learning_rate": 2.888954869358669e-06,
|
1819 |
-
"loss": 0.8259,
|
1820 |
-
"step": 26300
|
1821 |
-
},
|
1822 |
-
{
|
1823 |
-
"epoch": 1.94,
|
1824 |
-
"learning_rate": 2.5920427553444177e-06,
|
1825 |
-
"loss": 0.8262,
|
1826 |
-
"step": 26400
|
1827 |
-
},
|
1828 |
-
{
|
1829 |
-
"epoch": 1.94,
|
1830 |
-
"learning_rate": 2.295130641330166e-06,
|
1831 |
-
"loss": 0.8223,
|
1832 |
-
"step": 26500
|
1833 |
-
},
|
1834 |
-
{
|
1835 |
-
"epoch": 1.95,
|
1836 |
-
"learning_rate": 1.9982185273159142e-06,
|
1837 |
-
"loss": 0.8285,
|
1838 |
-
"step": 26600
|
1839 |
-
},
|
1840 |
-
{
|
1841 |
-
"epoch": 1.96,
|
1842 |
-
"learning_rate": 1.7013064133016625e-06,
|
1843 |
-
"loss": 0.8226,
|
1844 |
-
"step": 26700
|
1845 |
-
},
|
1846 |
-
{
|
1847 |
-
"epoch": 1.97,
|
1848 |
-
"learning_rate": 1.404394299287411e-06,
|
1849 |
-
"loss": 0.8154,
|
1850 |
-
"step": 26800
|
1851 |
-
},
|
1852 |
-
{
|
1853 |
-
"epoch": 1.97,
|
1854 |
-
"learning_rate": 1.107482185273159e-06,
|
1855 |
-
"loss": 0.8176,
|
1856 |
-
"step": 26900
|
1857 |
-
},
|
1858 |
-
{
|
1859 |
-
"epoch": 1.98,
|
1860 |
-
"learning_rate": 8.105700712589074e-07,
|
1861 |
-
"loss": 0.8122,
|
1862 |
-
"step": 27000
|
1863 |
-
},
|
1864 |
-
{
|
1865 |
-
"epoch": 1.98,
|
1866 |
-
"eval_loss": 0.14789555966854095,
|
1867 |
-
"eval_runtime": 1030.7995,
|
1868 |
-
"eval_samples_per_second": 15.529,
|
1869 |
-
"eval_steps_per_second": 1.941,
|
1870 |
-
"eval_wer": 0.16106740959248333,
|
1871 |
-
"step": 27000
|
1872 |
-
},
|
1873 |
-
{
|
1874 |
-
"epoch": 1.99,
|
1875 |
-
"learning_rate": 5.136579572446555e-07,
|
1876 |
-
"loss": 0.818,
|
1877 |
-
"step": 27100
|
1878 |
-
},
|
1879 |
-
{
|
1880 |
-
"epoch": 2.0,
|
1881 |
-
"learning_rate": 2.167458432304038e-07,
|
1882 |
-
"loss": 0.8284,
|
1883 |
-
"step": 27200
|
1884 |
-
},
|
1885 |
-
{
|
1886 |
-
"epoch": 2.0,
|
1887 |
-
"step": 27260,
|
1888 |
-
"total_flos": 4.0396309180498005e+20,
|
1889 |
-
"train_loss": 0.32739020716330625,
|
1890 |
-
"train_runtime": 49115.8494,
|
1891 |
-
"train_samples_per_second": 17.761,
|
1892 |
-
"train_steps_per_second": 0.555
|
1893 |
-
}
|
1894 |
-
],
|
1895 |
-
"max_steps": 27260,
|
1896 |
-
"num_train_epochs": 2,
|
1897 |
-
"total_flos": 4.0396309180498005e+20,
|
1898 |
-
"trial_name": null,
|
1899 |
-
"trial_params": null
|
1900 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2991
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d671fb0f181e146452d1d68a46c3b54df59aa573465bc6cf0a59cb0e02b849a
|
3 |
size 2991
|
vocab.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6, "g": 7, "h": 8, "i": 9, "j": 10, "k": 11, "l": 12, "m": 13, "n": 14, "o": 15, "p": 16, "q": 17, "r": 18, "s": 19, "t": 20, "u": 21, "v": 22, "w": 23, "x": 24, "y": 25, "z": 26, "ß": 27, "à": 28, "á": 29, "â": 30, "ä": 31, "æ": 32, "ç": 33, "é": 34, "í": 35, "î": 36, "ó": 37, "ô": 38, "ö": 39, "ø": 40, "ú": 41, "ü": 42, "þ": 43, "ā": 44, "č": 45, "đ": 46, "ħ": 47, "ī": 48, "ł": 49, "ō": 50, "ő": 51, "œ": 52, "ř": 53, "ś": 54, "ş": 55, "š": 56, "ż": 57, "ž": 58, "ș": 59, "ț": 60, "ə": 61, "̇": 62, "о": 63, "с": 64, "ш": 65, "ѹ": 66, "ḫ": 67, "|": 0, "[UNK]": 68, "[PAD]": 69}
|