Update README.md
Browse files
README.md
CHANGED
@@ -12,44 +12,42 @@ widget:
|
|
12 |
- text: This product is really bad!
|
13 |
---
|
14 |
|
15 |
-
#
|
16 |
|
17 |
-
This is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on the [Amazon Reviews dataset](https://www.kaggle.com/datasets/bittlingmayer/amazonreviews) for sentiment analysis.
|
18 |
|
19 |
-
##
|
20 |
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
|
26 |
-
##
|
27 |
|
28 |
The model was trained using the following parameters:
|
29 |
|
30 |
-
-
|
31 |
-
-
|
32 |
-
-
|
33 |
-
-
|
34 |
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
- **β±οΈ Eval Runtime:** 3177.538 seconds
|
40 |
-
- **π Eval Samples/Second:** 226.591
|
41 |
-
- **π Eval Steps/Second:** 7.081
|
42 |
-
- **π Train Runtime:** 110070.6349 seconds
|
43 |
-
- **π Train Samples/Second:** 78.495
|
44 |
-
- **π Train Steps/Second:** 2.453
|
45 |
-
- **π Train Loss:** 0.0858
|
46 |
-
- **β³ Eval Accuracy:** 97.19%
|
47 |
-
- **π Eval Precision:** 97.9%
|
48 |
-
- **β±οΈ Eval Recall:** 97.18%
|
49 |
-
- **π Eval F1 Score:** 97.19%
|
50 |
-
|
51 |
-
|
52 |
-
## π Usage
|
53 |
|
54 |
You can use this model directly with the Hugging Face `transformers` library:
|
55 |
|
@@ -63,10 +61,8 @@ tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
|
63 |
# Example usage
|
64 |
inputs = tokenizer("This product is great!", return_tensors="pt")
|
65 |
outputs = model(**inputs) # 1 for positive, 0 for negative
|
66 |
-
|
67 |
```
|
68 |
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
This model is licensed under the [MIT License](LICENSE).
|
|
|
12 |
- text: This product is really bad!
|
13 |
---
|
14 |
|
15 |
+
# Fine-tuned RoBERTa for Sentiment Analysis on Reviews
|
16 |
|
17 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on the [Amazon Reviews dataset](https://www.kaggle.com/datasets/bittlingmayer/amazonreviews) for sentiment analysis.
|
18 |
|
19 |
+
## Model Details
|
20 |
|
21 |
+
- **Model Name:** `AnkitAI/reviews-roberta-base-sentiment-analysis`
|
22 |
+
- **Base Model:** `cardiffnlp/twitter-roberta-base-sentiment-latest`
|
23 |
+
- **Dataset:** [Amazon Reviews](https://www.kaggle.com/datasets/bittlingmayer/amazonreviews)
|
24 |
+
- **Fine-tuning:** This model was fine-tuned for sentiment analysis with a classification head for binary sentiment classification (positive and negative).
|
25 |
|
26 |
+
## Training
|
27 |
|
28 |
The model was trained using the following parameters:
|
29 |
|
30 |
+
- **Learning Rate:** 2e-5
|
31 |
+
- **Batch Size:** 16
|
32 |
+
- **Weight Decay:** 0.01
|
33 |
+
- **Evaluation Strategy:** Epoch
|
34 |
|
35 |
+
### Training Details
|
36 |
|
37 |
+
- **Evaluation Loss:** 0.1049
|
38 |
+
- **Evaluation Runtime:** 3177.538 seconds
|
39 |
+
- **Evaluation Samples/Second:** 226.591
|
40 |
+
- **Evaluation Steps/Second:** 7.081
|
41 |
+
- **Training Runtime:** 110070.6349 seconds
|
42 |
+
- **Training Samples/Second:** 78.495
|
43 |
+
- **Training Steps/Second:** 2.453
|
44 |
+
- **Training Loss:** 0.0858
|
45 |
+
- **Evaluation Accuracy:** 97.19%
|
46 |
+
- **Evaluation Precision:** 97.9%
|
47 |
+
- **Evaluation Recall:** 97.18%
|
48 |
+
- **Evaluation F1 Score:** 97.19%
|
49 |
|
50 |
+
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
You can use this model directly with the Hugging Face `transformers` library:
|
53 |
|
|
|
61 |
# Example usage
|
62 |
inputs = tokenizer("This product is great!", return_tensors="pt")
|
63 |
outputs = model(**inputs) # 1 for positive, 0 for negative
|
|
|
64 |
```
|
65 |
|
66 |
+
## License
|
67 |
|
68 |
+
This model is licensed under the [MIT License](LICENSE).
|
|
|
|