AnthonyPeng commited on
Commit
94dffde
1 Parent(s): efbcbf2

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:5749
10
+ - loss:CosineSimilarityLoss
11
+ base_model: distilbert/distilbert-base-uncased
12
+ widget:
13
+ - source_sentence: A chef is preparing some food.
14
+ sentences:
15
+ - Five birds stand on the snow.
16
+ - A chef prepared a meal.
17
+ - There is no 'still' that is not relative to some other object.
18
+ - source_sentence: A woman is adding oil on fishes.
19
+ sentences:
20
+ - Large cruise ship floating on the water.
21
+ - It refers to the maximum f-stop (which is defined as the ratio of focal length
22
+ to effective aperture diameter).
23
+ - The woman is cutting potatoes.
24
+ - source_sentence: The player shoots the winning points.
25
+ sentences:
26
+ - Minimum wage laws hurt the least skilled, least productive the most.
27
+ - The basketball player is about to score points for his team.
28
+ - Three televisions, on on the floor, the other two on a box.
29
+ - source_sentence: Stars form in star-formation regions, which itself develop from
30
+ molecular clouds.
31
+ sentences:
32
+ - Although I believe Searle is mistaken, I don't think you have found the problem.
33
+ - It may be possible for a solar system like ours to exist outside of a galaxy.
34
+ - A blond-haired child performing on the trumpet in front of a house while his younger
35
+ brother watches.
36
+ - source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen
37
+ consort, the King has always been the sovereign.
38
+ sentences:
39
+ - At first, I thought this is a bit of a tricky question.
40
+ - A man plays the guitar.
41
+ - There is a very good reason not to refer to the Queen's spouse as "King" - because
42
+ they aren't the King.
43
+ datasets:
44
+ - sentence-transformers/stsb
45
+ pipeline_tag: sentence-similarity
46
+ library_name: sentence-transformers
47
+ metrics:
48
+ - pearson_cosine
49
+ - spearman_cosine
50
+ - pearson_manhattan
51
+ - spearman_manhattan
52
+ - pearson_euclidean
53
+ - spearman_euclidean
54
+ - pearson_dot
55
+ - spearman_dot
56
+ - pearson_max
57
+ - spearman_max
58
+ model-index:
59
+ - name: SentenceTransformer based on distilbert/distilbert-base-uncased
60
+ results:
61
+ - task:
62
+ type: semantic-similarity
63
+ name: Semantic Similarity
64
+ dataset:
65
+ name: sts test
66
+ type: sts-test
67
+ metrics:
68
+ - type: pearson_cosine
69
+ value: 0.8030410300406223
70
+ name: Pearson Cosine
71
+ - type: spearman_cosine
72
+ value: 0.7919852001519281
73
+ name: Spearman Cosine
74
+ - type: pearson_manhattan
75
+ value: 0.7844652264152261
76
+ name: Pearson Manhattan
77
+ - type: spearman_manhattan
78
+ value: 0.7731080752109497
79
+ name: Spearman Manhattan
80
+ - type: pearson_euclidean
81
+ value: 0.7850783107162547
82
+ name: Pearson Euclidean
83
+ - type: spearman_euclidean
84
+ value: 0.773598209415488
85
+ name: Spearman Euclidean
86
+ - type: pearson_dot
87
+ value: 0.7110638215846973
88
+ name: Pearson Dot
89
+ - type: spearman_dot
90
+ value: 0.703724781215264
91
+ name: Spearman Dot
92
+ - type: pearson_max
93
+ value: 0.8030410300406223
94
+ name: Pearson Max
95
+ - type: spearman_max
96
+ value: 0.7919852001519281
97
+ name: Spearman Max
98
+ ---
99
+
100
+ # SentenceTransformer based on distilbert/distilbert-base-uncased
101
+
102
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
103
+
104
+ ## Model Details
105
+
106
+ ### Model Description
107
+ - **Model Type:** Sentence Transformer
108
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
109
+ - **Maximum Sequence Length:** 512 tokens
110
+ - **Output Dimensionality:** 768 tokens
111
+ - **Similarity Function:** Cosine Similarity
112
+ - **Training Dataset:**
113
+ - [stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
114
+ - **Language:** en
115
+ <!-- - **License:** Unknown -->
116
+
117
+ ### Model Sources
118
+
119
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
120
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
121
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
122
+
123
+ ### Full Model Architecture
124
+
125
+ ```
126
+ SentenceTransformer(
127
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
128
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
129
+ )
130
+ ```
131
+
132
+ ## Usage
133
+
134
+ ### Direct Usage (Sentence Transformers)
135
+
136
+ First install the Sentence Transformers library:
137
+
138
+ ```bash
139
+ pip install -U sentence-transformers
140
+ ```
141
+
142
+ Then you can load this model and run inference.
143
+ ```python
144
+ from sentence_transformers import SentenceTransformer
145
+
146
+ # Download from the 🤗 Hub
147
+ model = SentenceTransformer("AnthonyPeng/distilbert-base-uncased-sts")
148
+ # Run inference
149
+ sentences = [
150
+ 'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
151
+ 'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
152
+ 'A man plays the guitar.',
153
+ ]
154
+ embeddings = model.encode(sentences)
155
+ print(embeddings.shape)
156
+ # [3, 768]
157
+
158
+ # Get the similarity scores for the embeddings
159
+ similarities = model.similarity(embeddings, embeddings)
160
+ print(similarities.shape)
161
+ # [3, 3]
162
+ ```
163
+
164
+ <!--
165
+ ### Direct Usage (Transformers)
166
+
167
+ <details><summary>Click to see the direct usage in Transformers</summary>
168
+
169
+ </details>
170
+ -->
171
+
172
+ <!--
173
+ ### Downstream Usage (Sentence Transformers)
174
+
175
+ You can finetune this model on your own dataset.
176
+
177
+ <details><summary>Click to expand</summary>
178
+
179
+ </details>
180
+ -->
181
+
182
+ <!--
183
+ ### Out-of-Scope Use
184
+
185
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
186
+ -->
187
+
188
+ ## Evaluation
189
+
190
+ ### Metrics
191
+
192
+ #### Semantic Similarity
193
+ * Dataset: `sts-test`
194
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
195
+
196
+ | Metric | Value |
197
+ |:--------------------|:----------|
198
+ | pearson_cosine | 0.803 |
199
+ | **spearman_cosine** | **0.792** |
200
+ | pearson_manhattan | 0.7845 |
201
+ | spearman_manhattan | 0.7731 |
202
+ | pearson_euclidean | 0.7851 |
203
+ | spearman_euclidean | 0.7736 |
204
+ | pearson_dot | 0.7111 |
205
+ | spearman_dot | 0.7037 |
206
+ | pearson_max | 0.803 |
207
+ | spearman_max | 0.792 |
208
+
209
+ <!--
210
+ ## Bias, Risks and Limitations
211
+
212
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
213
+ -->
214
+
215
+ <!--
216
+ ### Recommendations
217
+
218
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
219
+ -->
220
+
221
+ ## Training Details
222
+
223
+ ### Training Dataset
224
+
225
+ #### stsb
226
+
227
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
228
+ * Size: 5,749 training samples
229
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
230
+ * Approximate statistics based on the first 1000 samples:
231
+ | | sentence1 | sentence2 | score |
232
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
233
+ | type | string | string | float |
234
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
235
+ * Samples:
236
+ | sentence1 | sentence2 | score |
237
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
238
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
239
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
240
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
241
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
242
+ ```json
243
+ {
244
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
245
+ }
246
+ ```
247
+
248
+ ### Evaluation Dataset
249
+
250
+ #### stsb
251
+
252
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
253
+ * Size: 1,500 evaluation samples
254
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
255
+ * Approximate statistics based on the first 1000 samples:
256
+ | | sentence1 | sentence2 | score |
257
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
258
+ | type | string | string | float |
259
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
260
+ * Samples:
261
+ | sentence1 | sentence2 | score |
262
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
263
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
264
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
265
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
266
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
267
+ ```json
268
+ {
269
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
270
+ }
271
+ ```
272
+
273
+ ### Training Hyperparameters
274
+ #### Non-Default Hyperparameters
275
+
276
+ - `eval_strategy`: steps
277
+ - `per_device_train_batch_size`: 16
278
+ - `per_device_eval_batch_size`: 16
279
+ - `num_train_epochs`: 1
280
+ - `warmup_ratio`: 0.1
281
+ - `fp16`: True
282
+
283
+ #### All Hyperparameters
284
+ <details><summary>Click to expand</summary>
285
+
286
+ - `overwrite_output_dir`: False
287
+ - `do_predict`: False
288
+ - `eval_strategy`: steps
289
+ - `prediction_loss_only`: True
290
+ - `per_device_train_batch_size`: 16
291
+ - `per_device_eval_batch_size`: 16
292
+ - `per_gpu_train_batch_size`: None
293
+ - `per_gpu_eval_batch_size`: None
294
+ - `gradient_accumulation_steps`: 1
295
+ - `eval_accumulation_steps`: None
296
+ - `torch_empty_cache_steps`: None
297
+ - `learning_rate`: 5e-05
298
+ - `weight_decay`: 0.0
299
+ - `adam_beta1`: 0.9
300
+ - `adam_beta2`: 0.999
301
+ - `adam_epsilon`: 1e-08
302
+ - `max_grad_norm`: 1.0
303
+ - `num_train_epochs`: 1
304
+ - `max_steps`: -1
305
+ - `lr_scheduler_type`: linear
306
+ - `lr_scheduler_kwargs`: {}
307
+ - `warmup_ratio`: 0.1
308
+ - `warmup_steps`: 0
309
+ - `log_level`: passive
310
+ - `log_level_replica`: warning
311
+ - `log_on_each_node`: True
312
+ - `logging_nan_inf_filter`: True
313
+ - `save_safetensors`: True
314
+ - `save_on_each_node`: False
315
+ - `save_only_model`: False
316
+ - `restore_callback_states_from_checkpoint`: False
317
+ - `no_cuda`: False
318
+ - `use_cpu`: False
319
+ - `use_mps_device`: False
320
+ - `seed`: 42
321
+ - `data_seed`: None
322
+ - `jit_mode_eval`: False
323
+ - `use_ipex`: False
324
+ - `bf16`: False
325
+ - `fp16`: True
326
+ - `fp16_opt_level`: O1
327
+ - `half_precision_backend`: auto
328
+ - `bf16_full_eval`: False
329
+ - `fp16_full_eval`: False
330
+ - `tf32`: None
331
+ - `local_rank`: 0
332
+ - `ddp_backend`: None
333
+ - `tpu_num_cores`: None
334
+ - `tpu_metrics_debug`: False
335
+ - `debug`: []
336
+ - `dataloader_drop_last`: True
337
+ - `dataloader_num_workers`: 0
338
+ - `dataloader_prefetch_factor`: None
339
+ - `past_index`: -1
340
+ - `disable_tqdm`: False
341
+ - `remove_unused_columns`: True
342
+ - `label_names`: None
343
+ - `load_best_model_at_end`: False
344
+ - `ignore_data_skip`: False
345
+ - `fsdp`: []
346
+ - `fsdp_min_num_params`: 0
347
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
348
+ - `fsdp_transformer_layer_cls_to_wrap`: None
349
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
350
+ - `deepspeed`: None
351
+ - `label_smoothing_factor`: 0.0
352
+ - `optim`: adamw_torch
353
+ - `optim_args`: None
354
+ - `adafactor`: False
355
+ - `group_by_length`: False
356
+ - `length_column_name`: length
357
+ - `ddp_find_unused_parameters`: None
358
+ - `ddp_bucket_cap_mb`: None
359
+ - `ddp_broadcast_buffers`: False
360
+ - `dataloader_pin_memory`: True
361
+ - `dataloader_persistent_workers`: False
362
+ - `skip_memory_metrics`: True
363
+ - `use_legacy_prediction_loop`: False
364
+ - `push_to_hub`: False
365
+ - `resume_from_checkpoint`: None
366
+ - `hub_model_id`: None
367
+ - `hub_strategy`: every_save
368
+ - `hub_private_repo`: False
369
+ - `hub_always_push`: False
370
+ - `gradient_checkpointing`: False
371
+ - `gradient_checkpointing_kwargs`: None
372
+ - `include_inputs_for_metrics`: False
373
+ - `eval_do_concat_batches`: True
374
+ - `fp16_backend`: auto
375
+ - `push_to_hub_model_id`: None
376
+ - `push_to_hub_organization`: None
377
+ - `mp_parameters`:
378
+ - `auto_find_batch_size`: False
379
+ - `full_determinism`: False
380
+ - `torchdynamo`: None
381
+ - `ray_scope`: last
382
+ - `ddp_timeout`: 1800
383
+ - `torch_compile`: False
384
+ - `torch_compile_backend`: None
385
+ - `torch_compile_mode`: None
386
+ - `dispatch_batches`: None
387
+ - `split_batches`: None
388
+ - `include_tokens_per_second`: False
389
+ - `include_num_input_tokens_seen`: False
390
+ - `neftune_noise_alpha`: None
391
+ - `optim_target_modules`: None
392
+ - `batch_eval_metrics`: False
393
+ - `eval_on_start`: False
394
+ - `use_liger_kernel`: False
395
+ - `eval_use_gather_object`: False
396
+ - `batch_sampler`: batch_sampler
397
+ - `multi_dataset_batch_sampler`: proportional
398
+
399
+ </details>
400
+
401
+ ### Training Logs
402
+ | Epoch | Step | sts-test_spearman_cosine |
403
+ |:-----:|:----:|:------------------------:|
404
+ | 1.0 | 89 | 0.7920 |
405
+
406
+
407
+ ### Framework Versions
408
+ - Python: 3.10.15
409
+ - Sentence Transformers: 3.2.0.dev0
410
+ - Transformers: 4.45.2
411
+ - PyTorch: 2.4.1
412
+ - Accelerate: 1.0.1
413
+ - Datasets: 3.0.1
414
+ - Tokenizers: 0.20.1
415
+
416
+ ## Citation
417
+
418
+ ### BibTeX
419
+
420
+ #### Sentence Transformers
421
+ ```bibtex
422
+ @inproceedings{reimers-2019-sentence-bert,
423
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
424
+ author = "Reimers, Nils and Gurevych, Iryna",
425
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
426
+ month = "11",
427
+ year = "2019",
428
+ publisher = "Association for Computational Linguistics",
429
+ url = "https://arxiv.org/abs/1908.10084",
430
+ }
431
+ ```
432
+
433
+ <!--
434
+ ## Glossary
435
+
436
+ *Clearly define terms in order to be accessible across audiences.*
437
+ -->
438
+
439
+ <!--
440
+ ## Model Card Authors
441
+
442
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
443
+ -->
444
+
445
+ <!--
446
+ ## Model Card Contact
447
+
448
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
449
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.2",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0.dev0",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b17fc0afa98a94908742c1525fe0746984841ac5d781f7c64c2a1765aa27b1a
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "DistilBertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff