File size: 11,399 Bytes
4ca4e8f
9bcb78e
aa9c683
9bcb78e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
608be6d
9bcb78e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6486f13
 
 
 
 
 
 
 
 
 
 
 
67e3618
9bcb78e
 
 
 
 
 
 
67e3618
9bcb78e
 
 
 
 
 
 
 
 
 
67e3618
 
9bcb78e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa9c683
9bcb78e
 
 
aa9c683
5bfc39e
9bcb78e
 
 
 
 
 
 
 
 
adefdbb
9bcb78e
adefdbb
9bcb78e
 
 
 
 
 
 
 
157ee7d
9bcb78e
 
 
 
adefdbb
 
dc20c83
9bcb78e
 
 
 
 
 
 
 
 
adefdbb
6486f13
 
aa9c683
 
 
 
6486f13
aa9c683
 
 
4ca4e8f
67e3618
4ca4e8f
 
 
 
 
 
 
aa9c683
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#usually it's what is on the inside that counts, not this time. This script is a mess, but at least it works.
#import required modules
from huggingface_hub import login, get_token, whoami, repo_exists, file_exists, upload_folder, create_repo, upload_file, create_branch, update_repo_visibility
import os
import sys
import subprocess
import glob

#define os differences
oname = os.name
if oname == 'nt':
    osclear = 'cls'
    osmv = 'move'
    osrmd = 'rmdir /s /q'
    oscp = 'copy'
    pyt = 'venv\\scripts\\python.exe'
    slsh = '\\'
elif oname == 'posix':
    osclear = 'clear'
    osmv = 'mv'
    osrmd = 'rm -rf'
    oscp = 'cp'
    pyt = './venv/bin/python'
    slsh = '/'
else:
    sys.exit('This script is not compatible with your machine.')
def clear_screen():
    os.system(osclear)

#get token
if os.environ.get('KAGGLE_KERNEL_RUN_TYPE', None) is not None: #check if user in kaggle
    from kaggle_secrets import UserSecretsClient # type: ignore
    from kaggle_web_client import BackendError # type: ignore
    try:
        login(UserSecretsClient().get_secret("HF_TOKEN")) #login if token secret found
    except BackendError: 
        print('''
            When using Kaggle, make sure to use the secret key HF_TOKEN with a 'WRITE' token.
                   This will prevent the need to login every time you run the script.
                   Set your secrets with the secrets add-on on the top of the screen.
             ''')
if get_token() is not None:
    #if the token is found then log in:
    login(get_token())
    tfound = "Where are my doritos?" #doesn't matter what this is, only false is used
else:
    #if the token is not found then prompt user to provide it:
    login(input("API token not detected. Enter your HuggingFace (WRITE) token: "))
    tfound = "false"

#if the token is read only then prompt user to provide a write token:
while True:
    if whoami().get('auth', {}).get('accessToken', {}).get('role', None) != 'write':
        clear_screen()
        if os.environ.get('HF_TOKEN', None) is not None: #if environ finds HF_TOKEN as read-only then display following text and exit:
            print('''
                  You have the environment variable HF_TOKEN set.
                                 You cannot log in.
          Either set the environment variable to a 'WRITE' token or remove it.
                  ''')
            input("Press enter to continue.")
            sys.exit("Exiting...")
        if os.environ.get('COLAB_BACKEND_VERSION', None) is not None:
            print('''
                              Your Colab secret key is read-only
                Please switch your key to 'write' or disable notebook access on the left.
                  ''')
            sys.exit("Stuck in loop, exiting...")
        elif os.environ.get('KAGGLE_KERNEL_RUN_TYPE', None) is not None:
            print('''
                                      Your Kaggle secret key is read-only
                Please switch your key to 'write' or unattach from notebook in add-ons at the top.
                          Having a read-only key attched will require login every time.
                ''')
        print("You do not have write access to this repository. Please use a valid token with (WRITE) access.")
        login(input("Enter your HuggingFace (WRITE) token: "))
        continue
    break
clear_screen()

#get original model repo url
repo_url = input("Enter unquantized model repository (User/Repo): ")

#look for repo
if repo_exists(repo_url) == False:
    print(f"Model repo doesn't exist at https://huggingface.co/{repo_url}")
    sys.exit("Exiting...")
model = repo_url.replace("/", "_")
modelname = repo_url.split("/")[1]
clear_screen()

#ask for number of quants
qmount = int(input("Enter the number of quants you want to create: "))
qmount += 1
clear_screen()

#save bpw values
print(f"Type the BPW for the following {qmount - 1} quants. Recommend staying over 2.4 BPW. Use the vram calculator to find the best BPW values: https://huggingface.co/spaces/NyxKrage/LLM-Model-VRAM-Calculator")
qnum = {}
for i in range(1, qmount):
    qnum[f"bpw{i}"] = float(input(f"Enter BPW for quant {i} (2.00-8.00): ")) #convert input to float for proper sorting
clear_screen()

#collect all values in a list for sorting
bpwvalue = list(qnum.values())

#sort the list from smallest to largest
bpwvalue.sort()

#ask to change repo visibility to public on hf hub
priv2pub = input("Do you want to make the repo public after successful quants? (y/n): ")
while priv2pub != 'y' and priv2pub != 'n':
    priv2pub = input("Please enter 'y' or 'n': ")
clear_screen()

#ask to delete original fp16 weights
delmodel = input("Do you want to delete the original model? (Won't delete if paused or failed) (y/n): ")
while delmodel != 'y' and delmodel != 'n':
    delmodel = input("Please enter 'y' or 'n': ")
clear_screen()

#downloading the model
if not os.path.exists(f"models{slsh}{model}{slsh}converted-st"): #check if model was converted to safetensors, skip download if it was
    result = subprocess.run(f"{pyt} download-model.py {repo_url}", shell=True) #download model from hf (Credit to oobabooga for this script)
    if result.returncode != 0:
        print("Download failed.")
        sys.exit("Exiting...")
    clear_screen()

#convert to safetensors if bin
if not glob.glob(f"models/{model}/*.safetensors"): #check if safetensors model exists
    convertst = input("Couldn't find safetensors model, do you want to convert to safetensors? (y/n): ")
    while convertst != 'y' and convertst != 'n':
        convertst = input("Please enter 'y' or 'n': ")
    if convertst == 'y':
        print("Converting weights to safetensors, please wait...")
        result = subprocess.run(f"{pyt} convert-to-safetensors.py models{slsh}{model} --output models{slsh}{model}-st", shell=True) #convert to safetensors (Credit to oobabooga for this script as well)
        if result.returncode != 0:
            print("Converting failed. Please look for a safetensors model or convert model manually.")
            sys.exit("Exiting...")
        subprocess.run(f"{osrmd} models{slsh}{model}", shell=True) #remove previous weights
        subprocess.run(f"{osmv} models{slsh}{model}-st models{slsh}{model}", shell=True) #replace with safetensors
        open(f"models{slsh}{model}{slsh}converted-st", 'w').close()
        print("Finished converting")
    else:
        sys.exit("Can't quantize a non-safetensors model. Exiting...")
clear_screen()

#create new repo if one doesn't already exist
if repo_exists(f"{whoami().get('name', None)}/{modelname}-exl2") == False:
    print("Creating model repository...")
    create_repo(f"{whoami().get('name', None)}/{modelname}-exl2", private=True)
    print(f"Created repo at https://huggingface.co/{whoami().get('name', None)}/{modelname}-exl2") #notify user of repo creation

    #create the markdown file
    print("Writing model card...")
    with open('./README.md', 'w') as file:
        file.write(f"# Exl2 quants for [{modelname}](https://huggingface.co/{repo_url})\n\n")
        file.write("## Automatically quantized using the auto quant script from [hf-scripts](https://huggingface.co/anthonyg5005/hf-scripts)\n\n")
        file.write(f"Would recommend {whoami().get('name', None)} to change up this README to include more info.\n\n")
        file.write("### BPW:\n\n")
        for bpw in bpwvalue:
            file.write(f"[{bpw}](https://huggingface.co/{whoami().get('name', None)}/{modelname}-exl2/tree/{bpw}bpw)\\\n")
        file.write(f"[measurement.json](https://huggingface.co/{whoami().get('name', None)}/{modelname}-exl2/blob/main/measurement.json)\n")
    print("Created README.md")

    upload_file(path_or_fileobj="README.md", path_in_repo="README.md", repo_id=f"{whoami().get('name', None)}/{modelname}-exl2", commit_message="Add temp README") #upload md file
    print("Uploaded README.md to main")
else:
    input("repo already exists, are you resuming a previous process? (Press enter to continue, ctrl+c to exit)")

#start converting
for bpw in bpwvalue:
    if os.path.exists(f"measurements{slsh}{model}-measure{slsh}measurement.json"): # Check if measurement.json exists
        cmdir = False
        mskip = f" -m measurements{slsh}{model}-measure{slsh}measurement.json" #skip measurement if it exists
    else:
        cmdir = True
        mskip = ""
    print(f"Starting quantization for BPW {bpw}")
    os.makedirs(f"{model}-exl2-{bpw}bpw-WD", exist_ok=True) #create working directory
    os.makedirs(f"{model}-exl2-{bpw}bpw", exist_ok=True) #create compile full directory
    subprocess.run(f"{oscp} models{slsh}{model}{slsh}config.json {model}-exl2-{bpw}bpw-WD", shell=True) #copy config to working directory
    #more settings exist in the convert.py script, to veiw them go to docs/convert.md or https://github.com/turboderp/exllamav2/blob/master/doc/convert.md
    result = subprocess.run(f"{pyt} exllamav2/convert.py -i models/{model} -o {model}-exl2-{bpw}bpw-WD -cf {model}-exl2-{bpw}bpw -b {bpw}{mskip} -hb 8", shell=True) #run quantization and exit if failed (Credit to turbo for his dedication to exl2)
    if result.returncode != 0:
        print("Quantization failed.")
        sys.exit("Exiting...")
    if cmdir == True:
        os.makedirs(f"measurements{slsh}{model}-measure", exist_ok=True) #create measurement directory
        subprocess.run(f"{oscp} {model}-exl2-{bpw}bpw-WD{slsh}measurement.json measurements{slsh}{model}-measure", shell=True) #copy measurement to measure directory
        open(f"measurements{slsh}{model}-measure/Delete folder when no more quants are needed from this model", 'w').close()
    try:
        create_branch(f"{whoami().get('name', None)}/{modelname}-exl2", branch=f"{bpw}bpw") #create branch
    except:
        print(f"Branch {bpw} already exists, trying upload...")
    upload_folder(folder_path=f"{model}-exl2-{bpw}bpw", repo_id=f"{whoami().get('name', None)}/{modelname}-exl2", commit_message=f"Add quant for BPW {bpw}", revision=f"{bpw}bpw") #upload quantized model
    subprocess.run(f"{osrmd} {model}-exl2-{bpw}bpw-WD", shell=True) #remove working directory
    subprocess.run(f"{osrmd} {model}-exl2-{bpw}bpw", shell=True) #remove compile directory

if file_exists(f"{whoami().get('name', None)}/{modelname}-exl2", "measurement.json") == False: #check if measurement.json exists in main
    upload_file(path_or_fileobj=f"measurements{slsh}{model}-measure{slsh}measurement.json", path_in_repo="measurement.json", repo_id=f"{whoami().get('name', None)}/{modelname}-exl2", commit_message="Add measurement.json") #upload measurement.json to main

# if chose to delete model at the beginning, delete the model
if delmodel == 'y':
    subprocess.run(f"{osrmd} models{slsh}{model}", shell=True)
    print(f"Deleted models/{model}")

#update repo visibility if user chose to
if priv2pub == 'y':
    update_repo_visibility(f"{whoami().get('name', None)}/{modelname}-exl2", private=False)
    print("Repo is now public.")

#if new sign in, tell user
if tfound == 'false':
    print(f'''
              You are now logged in as {whoami().get('fullname', None)}.
          
          To logout, use the hf command line interface 'huggingface-cli logout'
               To view your active account, use 'huggingface-cli whoami'
          ''')
    
print(f'''Quants available at https://huggingface.co/{whoami().get('name', None)}/{modelname}-exl2''')