File size: 1,678 Bytes
d18a0b5
0fccd0c
 
 
 
 
 
 
 
 
d18a0b5
 
0fccd0c
 
d18a0b5
0fccd0c
d18a0b5
0fccd0c
 
 
 
 
d18a0b5
0fccd0c
d18a0b5
0fccd0c
d18a0b5
0fccd0c
d18a0b5
0fccd0c
d18a0b5
0fccd0c
d18a0b5
0fccd0c
d18a0b5
0fccd0c
d18a0b5
0fccd0c
d18a0b5
0fccd0c
 
 
 
 
 
 
 
 
 
 
d18a0b5
0fccd0c
d18a0b5
0fccd0c
 
 
 
 
d18a0b5
 
0fccd0c
d18a0b5
0fccd0c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper-Anuj-small-Telugu-final
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper-Anuj-small-Telugu-final

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1426
- Wer: 34.9876
- Cer: 11.4531

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 6
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1800

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     | Cer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:|
| 0.0642        | 3.9474  | 600  | 0.1178          | 43.0273 | 8.8399  |
| 0.0046        | 7.8947  | 1200 | 0.1248          | 35.9801 | 8.3327  |
| 0.0003        | 11.8421 | 1800 | 0.1426          | 34.9876 | 11.4531 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1