File size: 3,083 Bytes
a160f8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: mit
base_model: prajjwal1/bert-tiny
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: I04-PC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# I04-PC
This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0916
- Accuracy: 0.98
- F1: 0.9899
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 0.01 | 50 | 0.6723 | 0.66 | 0.6376 |
| No log | 0.02 | 100 | 0.5802 | 0.71 | 0.7065 |
| No log | 0.03 | 150 | 0.4534 | 0.87 | 0.8701 |
| No log | 0.04 | 200 | 0.3370 | 0.88 | 0.88 |
| No log | 0.05 | 250 | 0.2473 | 0.94 | 0.9394 |
| No log | 0.06 | 300 | 0.2231 | 0.93 | 0.9295 |
| No log | 0.07 | 350 | 0.1813 | 0.94 | 0.9394 |
| No log | 0.08 | 400 | 0.1519 | 0.96 | 0.9599 |
| No log | 0.09 | 450 | 0.1526 | 0.96 | 0.9599 |
| 0.3852 | 0.1 | 500 | 0.1554 | 0.96 | 0.9599 |
| 0.3852 | 0.11 | 550 | 0.1495 | 0.96 | 0.9599 |
| 0.3852 | 0.12 | 600 | 0.1206 | 0.96 | 0.9599 |
| 0.3852 | 0.13 | 650 | 0.1013 | 0.96 | 0.9599 |
| 0.3852 | 0.14 | 700 | 0.0592 | 0.99 | 0.9900 |
| 0.3852 | 0.15 | 750 | 0.0583 | 0.99 | 0.9900 |
| 0.3852 | 0.16 | 800 | 0.0551 | 0.99 | 0.9900 |
| 0.3852 | 0.17 | 850 | 0.0540 | 0.99 | 0.9900 |
| 0.3852 | 0.18 | 900 | 0.0539 | 0.99 | 0.9900 |
| 0.3852 | 0.19 | 950 | 0.0537 | 0.99 | 0.9900 |
| 0.1428 | 0.2 | 1000 | 0.0533 | 0.99 | 0.9900 |
| 0.1428 | 0.2 | 1050 | 0.0528 | 0.99 | 0.9900 |
| 0.1428 | 0.21 | 1100 | 0.0510 | 0.99 | 0.9900 |
| 0.1428 | 0.22 | 1150 | 0.0524 | 0.99 | 0.9900 |
| 0.1428 | 0.23 | 1200 | 0.0524 | 0.99 | 0.9900 |
| 0.1428 | 0.24 | 1250 | 0.0510 | 0.99 | 0.9900 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
|