File size: 3,083 Bytes
a160f8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: mit
base_model: prajjwal1/bert-tiny
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: I04-PC
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# I04-PC

This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0916
- Accuracy: 0.98
- F1: 0.9899

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log        | 0.01  | 50   | 0.6723          | 0.66     | 0.6376 |
| No log        | 0.02  | 100  | 0.5802          | 0.71     | 0.7065 |
| No log        | 0.03  | 150  | 0.4534          | 0.87     | 0.8701 |
| No log        | 0.04  | 200  | 0.3370          | 0.88     | 0.88   |
| No log        | 0.05  | 250  | 0.2473          | 0.94     | 0.9394 |
| No log        | 0.06  | 300  | 0.2231          | 0.93     | 0.9295 |
| No log        | 0.07  | 350  | 0.1813          | 0.94     | 0.9394 |
| No log        | 0.08  | 400  | 0.1519          | 0.96     | 0.9599 |
| No log        | 0.09  | 450  | 0.1526          | 0.96     | 0.9599 |
| 0.3852        | 0.1   | 500  | 0.1554          | 0.96     | 0.9599 |
| 0.3852        | 0.11  | 550  | 0.1495          | 0.96     | 0.9599 |
| 0.3852        | 0.12  | 600  | 0.1206          | 0.96     | 0.9599 |
| 0.3852        | 0.13  | 650  | 0.1013          | 0.96     | 0.9599 |
| 0.3852        | 0.14  | 700  | 0.0592          | 0.99     | 0.9900 |
| 0.3852        | 0.15  | 750  | 0.0583          | 0.99     | 0.9900 |
| 0.3852        | 0.16  | 800  | 0.0551          | 0.99     | 0.9900 |
| 0.3852        | 0.17  | 850  | 0.0540          | 0.99     | 0.9900 |
| 0.3852        | 0.18  | 900  | 0.0539          | 0.99     | 0.9900 |
| 0.3852        | 0.19  | 950  | 0.0537          | 0.99     | 0.9900 |
| 0.1428        | 0.2   | 1000 | 0.0533          | 0.99     | 0.9900 |
| 0.1428        | 0.2   | 1050 | 0.0528          | 0.99     | 0.9900 |
| 0.1428        | 0.21  | 1100 | 0.0510          | 0.99     | 0.9900 |
| 0.1428        | 0.22  | 1150 | 0.0524          | 0.99     | 0.9900 |
| 0.1428        | 0.23  | 1200 | 0.0524          | 0.99     | 0.9900 |
| 0.1428        | 0.24  | 1250 | 0.0510          | 0.99     | 0.9900 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0