Anwarkh1 commited on
Commit
8926e6f
1 Parent(s): 3fdbe8f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -0
README.md CHANGED
@@ -1,3 +1,46 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ # Skin Cancer Image Classification Model
5
+
6
+ ## Introduction
7
+
8
+ This model is designed for the classification of skin cancer images into various categories including benign keratosis-like lesions, basal cell carcinoma, actinic keratoses, vascular lesions, melanocytic nevi, melanoma, and dermatofibroma.
9
+
10
+ ## Model Overview
11
+
12
+ - Model Architecture: Vision Transformer (ViT)
13
+ - Pre-trained Model: Google's ViT with 16x16 patch size and trained on ImageNet21k dataset
14
+ - Modified Classification Head: The classification head has been replaced to adapt the model to the skin cancer classification task.
15
+
16
+ ## Dataset
17
+
18
+ - Dataset Name: Skin Cancer Dataset
19
+ - Source: [Marmal88's Skin Cancer Dataset on Hugging Face](https://huggingface.co/datasets/marmal88/skin_cancer)
20
+ - Classes: Benign keratosis-like lesions, Basal cell carcinoma, Actinic keratoses, Vascular lesions, Melanocytic nevi, Melanoma, Dermatofibroma
21
+
22
+ ## Training
23
+
24
+ - Optimizer: Adam optimizer with a learning rate of 1e-4
25
+ - Loss Function: Cross-Entropy Loss
26
+ - Batch Size: 32
27
+ - Number of Epochs: 5
28
+
29
+ ## Evaluation Metrics
30
+
31
+ - Train Loss: Average loss over the training dataset
32
+ - Train Accuracy: Accuracy over the training dataset
33
+ - Validation Loss: Average loss over the validation dataset
34
+ - Validation Accuracy: Accuracy over the validation dataset
35
+
36
+ ## Results
37
+
38
+ - Epoch 1/5, Train Loss: 0.7168, Train Accuracy: 0.7586, Val Loss: 0.4994, Val Accuracy: 0.8355
39
+ - Epoch 2/5, Train Loss: 0.4550, Train Accuracy: 0.8466, Val Loss: 0.3237, Val Accuracy: 0.8973
40
+ - Epoch 3/5, Train Loss: 0.2959, Train Accuracy: 0.9028, Val Loss: 0.1790, Val Accuracy: 0.9530
41
+ - Epoch 4/5, Train Loss: 0.1595, Train Accuracy: 0.9482, Val Loss: 0.1498, Val Accuracy: 0.9555
42
+ - Epoch 5/5, Train Loss: 0.1208, Train Accuracy: 0.9614, Val Loss: 0.1000, Val Accuracy: 0.9695
43
+ ## Conclusion
44
+
45
+ The model demonstrates good performance in classifying skin cancer images into various categories. Further fine-tuning or experimentation may improve performance on this task.
46
+