Apocalypse-19
commited on
Commit
•
8daf407
1
Parent(s):
6be719a
Uploading the model
Browse files- README.md +37 -0
- a2c-RobotArm.zip +3 -0
- a2c-RobotArm/_stable_baselines3_version +1 -0
- a2c-RobotArm/data +97 -0
- a2c-RobotArm/policy.optimizer.pth +3 -0
- a2c-RobotArm/policy.pth +3 -0
- a2c-RobotArm/pytorch_variables.pth +3 -0
- a2c-RobotArm/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.07 +/- 0.54
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-RobotArm.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f06853cebf176d09f42ca4487820a10b79f96fbd3ac635f77c1fdf1c1283b58a
|
3 |
+
size 109566
|
a2c-RobotArm/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-RobotArm/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f79b5821550>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f79b5820b00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"num_timesteps": 2000000,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682034945957005092,
|
30 |
+
"learning_rate": 0.0009,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/TX2/SH/LkoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAgdLKPgtUwbs3zg4/gdLKPgtUwbs3zg4/gdLKPgtUwbs3zg4/gdLKPgtUwbs3zg4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUAijP4W1yz+0oMW+uW7Gv4NEuj8f6Ny/P+rFP3K9tr9igis/YYe1PwjJkj85dzm9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACB0so+C1TBuzfODj+dI5M9MPNtunEAeD2B0so+C1TBuzfODj+dI5M9MPNtunEAeD2B0so+C1TBuzfODj+dI5M9MPNtunEAeD2B0so+C1TBuzfODj+dI5M9MPNtunEAeD2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[ 0.39613727 -0.00589991 0.5578341 ]\n [ 0.39613727 -0.00589991 0.5578341 ]\n [ 0.39613727 -0.00589991 0.5578341 ]\n [ 0.39613727 -0.00589991 0.5578341 ]]",
|
40 |
+
"desired_goal": "[[ 1.2736912 1.591477 -0.3859917 ]\n [-1.550254 1.4552158 -1.7258338 ]\n [ 1.5462111 -1.4276564 0.66995823]\n [ 1.4181939 1.14676 -0.04527972]]",
|
41 |
+
"observation": "[[ 0.39613727 -0.00589991 0.5578341 0.07184527 -0.00090771 0.0605473 ]\n [ 0.39613727 -0.00589991 0.5578341 0.07184527 -0.00090771 0.0605473 ]\n [ 0.39613727 -0.00589991 0.5578341 0.07184527 -0.00090771 0.0605473 ]\n [ 0.39613727 -0.00589991 0.5578341 0.07184527 -0.00090771 0.0605473 ]]"
|
42 |
+
},
|
43 |
+
"_last_episode_starts": {
|
44 |
+
":type:": "<class 'numpy.ndarray'>",
|
45 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
46 |
+
},
|
47 |
+
"_last_original_obs": {
|
48 |
+
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzX33PLUYeDxoDoU+c4QUPkT5DT7RUkg+QDTFPJJWIT08LEg9QhomvOWRoT1Rbno+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[ 0.03021135 0.01514261 0.25987554]\n [ 0.1450365 0.13864619 0.19562842]\n [ 0.02407277 0.0393892 0.04887031]\n [-0.0101381 0.07889155 0.24456145]]",
|
52 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
+
},
|
54 |
+
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
+
"sde_sample_freq": -1,
|
57 |
+
"_current_progress_remaining": 0.0,
|
58 |
+
"_stats_window_size": 100,
|
59 |
+
"ep_info_buffer": {
|
60 |
+
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIojzcAKzAcCUhpRSlIwBbJRLMowBdJRHQLYxsW6K+BZ1fZQoaAZoCWgPQwh3+GuyRn38v5SGlFKUaBVLMmgWR0C2MY6qwQlKdX2UKGgGaAloD0MI7GrylNV097+UhpRSlGgVSzJoFkdAtjFrm1YyPHV9lChoBmgJaA9DCOqURzfCIgTAlIaUUpRoFUsyaBZHQLYxSMfA9FF1fZQoaAZoCWgPQwjSiQRTzewFwJSGlFKUaBVLMmgWR0C2MkhInSfEdX2UKGgGaAloD0MIk8MnnUhw87+UhpRSlGgVSzJoFkdAtjIlcIJJG3V9lChoBmgJaA9DCBA//z14TQDAlIaUUpRoFUsyaBZHQLYyAmaH9FZ1fZQoaAZoCWgPQwghlWJH41Djv5SGlFKUaBVLMmgWR0C2Md+clPaddX2UKGgGaAloD0MIPXyZKELq6b+UhpRSlGgVSzJoFkdAtjLiIxgy/XV9lChoBmgJaA9DCDm0yHa+nwTAlIaUUpRoFUsyaBZHQLYyv1tO2y91fZQoaAZoCWgPQwibrie6Lnzvv5SGlFKUaBVLMmgWR0C2MpxPTG5udX2UKGgGaAloD0MIGJRpNLkY5r+UhpRSlGgVSzJoFkdAtjJ5fiPyTnV9lChoBmgJaA9DCKlNnNzv0ADAlIaUUpRoFUsyaBZHQLYzdonKGL11fZQoaAZoCWgPQwhyGMxfIfMKwJSGlFKUaBVLMmgWR0C2M1O36Q/5dX2UKGgGaAloD0MI1XlU/N/RCsCUhpRSlGgVSzJoFkdAtjMwpLEk0XV9lChoBmgJaA9DCCnrNxPThd+/lIaUUpRoFUsyaBZHQLYzDciGFi91fZQoaAZoCWgPQwgGS3UBL/P1v5SGlFKUaBVLMmgWR0C2NB4cWCVbdX2UKGgGaAloD0MIPZzAdFp3+b+UhpRSlGgVSzJoFkdAtjP7VI7NjnV9lChoBmgJaA9DCKhxb37DxOW/lIaUUpRoFUsyaBZHQLYz2Ds+mnB1fZQoaAZoCWgPQwj1ZWmn5nLuv5SGlFKUaBVLMmgWR0C2M7VWXC0odX2UKGgGaAloD0MI5e0IpwVv8r+UhpRSlGgVSzJoFkdAtjSzCDVYp3V9lChoBmgJaA9DCMjT8gNXee2/lIaUUpRoFUsyaBZHQLY0kDw6QvJ1fZQoaAZoCWgPQwgt7GmHv6bsv5SGlFKUaBVLMmgWR0C2NG0xdpqRdX2UKGgGaAloD0MI0A8jhEc7B8CUhpRSlGgVSzJoFkdAtjRKPYFqz3V9lChoBmgJaA9DCPp6vma5LPu/lIaUUpRoFUsyaBZHQLY1WIEKVpt1fZQoaAZoCWgPQwhfRrHc0mr7v5SGlFKUaBVLMmgWR0C2NTWxptaZdX2UKGgGaAloD0MI1Ce5wyYy4r+UhpRSlGgVSzJoFkdAtjUSmALApXV9lChoBmgJaA9DCBsN4C2QwAPAlIaUUpRoFUsyaBZHQLY077OE/Sp1fZQoaAZoCWgPQwhZ/RGGAcv8v5SGlFKUaBVLMmgWR0C2Ne2ecx0udX2UKGgGaAloD0MIE0TdByB1/b+UhpRSlGgVSzJoFkdAtjXK0+kgwHV9lChoBmgJaA9DCMTSwI9q2PG/lIaUUpRoFUsyaBZHQLY1p/6O5rh1fZQoaAZoCWgPQwhC6+HLRJH3v5SGlFKUaBVLMmgWR0C2NYUnXumadX2UKGgGaAloD0MISl8IOe//AsCUhpRSlGgVSzJoFkdAtjZ+I42jwnV9lChoBmgJaA9DCC9SKAtfXwTAlIaUUpRoFUsyaBZHQLY2W0Bfa6B1fZQoaAZoCWgPQwiIg4QoX9Dlv5SGlFKUaBVLMmgWR0C2NjgdjoZAdX2UKGgGaAloD0MIKQmJtI0/6L+UhpRSlGgVSzJoFkdAtjYVKXfIjnV9lChoBmgJaA9DCLH6IwwDFvK/lIaUUpRoFUsyaBZHQLY3E2OyVwB1fZQoaAZoCWgPQwhmMbH5uLbxv5SGlFKUaBVLMmgWR0C2NvCJKraNdX2UKGgGaAloD0MIEce6uI0G37+UhpRSlGgVSzJoFkdAtjbNeokzGnV9lChoBmgJaA9DCOPfZ1w4ENC/lIaUUpRoFUsyaBZHQLY2qrUb1h91fZQoaAZoCWgPQwgSnzvB/isDwJSGlFKUaBVLMmgWR0C2N6Z++dsjdX2UKGgGaAloD0MIEcXkDTCz97+UhpRSlGgVSzJoFkdAtjeDrWy1NXV9lChoBmgJaA9DCCxGXWvv0/m/lIaUUpRoFUsyaBZHQLY3YKJl8PZ1fZQoaAZoCWgPQwhkrgyqDc7mv5SGlFKUaBVLMmgWR0C2Nz265Gz9dX2UKGgGaAloD0MIalA0D2BR+b+UhpRSlGgVSzJoFkdAtjg3Pv8ZUHV9lChoBmgJaA9DCOeMKO0NPvq/lIaUUpRoFUsyaBZHQLY4FE5Qxet1fZQoaAZoCWgPQwivQzUlWYf0v5SGlFKUaBVLMmgWR0C2N/ExEfDDdX2UKGgGaAloD0MIg92wbVGm87+UhpRSlGgVSzJoFkdAtjfOakRBeHV9lChoBmgJaA9DCHxgx3+BoArAlIaUUpRoFUsyaBZHQLY44QmeDnN1fZQoaAZoCWgPQwj+CwQBMjQAwJSGlFKUaBVLMmgWR0C2OL6j8DSxdX2UKGgGaAloD0MItww4S8kSBsCUhpRSlGgVSzJoFkdAtjibkGRmsnV9lChoBmgJaA9DCMReKGA7GPK/lIaUUpRoFUsyaBZHQLY4eL3bmEJ1fZQoaAZoCWgPQwhfsvFgi93yv5SGlFKUaBVLMmgWR0C2OXWjsUqQdX2UKGgGaAloD0MIPNnNjH609r+UhpRSlGgVSzJoFkdAtjlS2DxsmHV9lChoBmgJaA9DCNZVgVoMvgLAlIaUUpRoFUsyaBZHQLY5L9U0elt1fZQoaAZoCWgPQwgcKVsk7Yb4v5SGlFKUaBVLMmgWR0C2OQ0EX+ERdX2UKGgGaAloD0MIZqAy/n1G+7+UhpRSlGgVSzJoFkdAtjoeYBvJinV9lChoBmgJaA9DCKFI93MKsvK/lIaUUpRoFUsyaBZHQLY5+6XSjQB1fZQoaAZoCWgPQwh1zHnGviTzv5SGlFKUaBVLMmgWR0C2OditJWeZdX2UKGgGaAloD0MIhe/9Ddrr97+UhpRSlGgVSzJoFkdAtjm2VY6nznV9lChoBmgJaA9DCAQ3UrZIGvm/lIaUUpRoFUsyaBZHQLY6x8lHBk91fZQoaAZoCWgPQwiSk4lbBXH5v5SGlFKUaBVLMmgWR0C2OqVqzqrzdX2UKGgGaAloD0MIkWKARBOo4r+UhpRSlGgVSzJoFkdAtjqCQxN7B3V9lChoBmgJaA9DCJIIjWDjeu2/lIaUUpRoFUsyaBZHQLY6X20iQkp1fZQoaAZoCWgPQwgvppnudZL1v5SGlFKUaBVLMmgWR0C2O2seXAuadX2UKGgGaAloD0MIBeCfUiUK/b+UhpRSlGgVSzJoFkdAtjtIstkFwHV9lChoBmgJaA9DCAFO7+L9uO2/lIaUUpRoFUsyaBZHQLY7JapPykN1fZQoaAZoCWgPQwgeU3dlFwz7v5SGlFKUaBVLMmgWR0C2OwLdFfAsdX2UKGgGaAloD0MIYDyDhv7J/r+UhpRSlGgVSzJoFkdAtjwGdQO4G3V9lChoBmgJaA9DCO4jtybdlt6/lIaUUpRoFUsyaBZHQLY746mwaBJ1fZQoaAZoCWgPQwgHCryTTy8EwJSGlFKUaBVLMmgWR0C2O8Cm/FisdX2UKGgGaAloD0MICtrk8Ekn57+UhpRSlGgVSzJoFkdAtjud0YCQtHV9lChoBmgJaA9DCLK9FvTeWPa/lIaUUpRoFUsyaBZHQLY8md1+y7h1fZQoaAZoCWgPQwhKDW0ANqDgv5SGlFKUaBVLMmgWR0C2PHcHfMwDdX2UKGgGaAloD0MIokJ1c/G367+UhpRSlGgVSzJoFkdAtjxT52yLRHV9lChoBmgJaA9DCAMixJWzNwLAlIaUUpRoFUsyaBZHQLY8MQ+EAYJ1fZQoaAZoCWgPQwjZeoZwzLLov5SGlFKUaBVLMmgWR0C2PSxSDRMOdX2UKGgGaAloD0MIdy6M9KL25r+UhpRSlGgVSzJoFkdAtj0Jat9x63V9lChoBmgJaA9DCL4uw3+6Qfa/lIaUUpRoFUsyaBZHQLY85jnV5KR1fZQoaAZoCWgPQwjz5nCt9jD4v5SGlFKUaBVLMmgWR0C2PMNtIkJKdX2UKGgGaAloD0MIeedQhqoY6L+UhpRSlGgVSzJoFkdAtj3BYmsvI3V9lChoBmgJaA9DCKnZA63AUP2/lIaUUpRoFUsyaBZHQLY9no0ygwp1fZQoaAZoCWgPQwiTbkvkgjPsv5SGlFKUaBVLMmgWR0C2PXtrTH81dX2UKGgGaAloD0MIh+C4jJsa0r+UhpRSlGgVSzJoFkdAtj1Yiliz9nV9lChoBmgJaA9DCNUI/Uy9Lv6/lIaUUpRoFUsyaBZHQLY+VT4tYjl1fZQoaAZoCWgPQwhJLZRMTm3mv5SGlFKUaBVLMmgWR0C2PjJwfhdddX2UKGgGaAloD0MIQQ3fwroRBcCUhpRSlGgVSzJoFkdAtj4PYh+vyXV9lChoBmgJaA9DCLyxoDAoU+m/lIaUUpRoFUsyaBZHQLY97JSBK+V1fZQoaAZoCWgPQwitpuuJrgv1v5SGlFKUaBVLMmgWR0C2PuuZ9d/sdX2UKGgGaAloD0MID0OrkzNU+7+UhpRSlGgVSzJoFkdAtj7IzvZyuXV9lChoBmgJaA9DCGPyBpj5DgHAlIaUUpRoFUsyaBZHQLY+pcsDnvF1fZQoaAZoCWgPQwjW5v9VRw73v5SGlFKUaBVLMmgWR0C2PoMGHHmzdX2UKGgGaAloD0MIaxFRTN6A/L+UhpRSlGgVSzJoFkdAtj971YhdMXV9lChoBmgJaA9DCIElV7H4bQDAlIaUUpRoFUsyaBZHQLY/WOmixml1fZQoaAZoCWgPQwgE4+DSMWflv5SGlFKUaBVLMmgWR0C2PzXDR+jNdX2UKGgGaAloD0MItK88SE8xBMCUhpRSlGgVSzJoFkdAtj8S1Cw8n3V9lChoBmgJaA9DCFjmrboOlfK/lIaUUpRoFUsyaBZHQLZAJNeMQ3B1fZQoaAZoCWgPQwh551CGqlj5v5SGlFKUaBVLMmgWR0C2QAIHLRrrdX2UKGgGaAloD0MI0QMfgxWn/r+UhpRSlGgVSzJoFkdAtj/faIvalHV9lChoBmgJaA9DCJtXdVYLLPy/lIaUUpRoFUsyaBZHQLY/vJDVpbl1ZS4="
|
62 |
+
},
|
63 |
+
"ep_success_buffer": {
|
64 |
+
":type:": "<class 'collections.deque'>",
|
65 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
+
},
|
67 |
+
"_n_updates": 62500,
|
68 |
+
"n_steps": 8,
|
69 |
+
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
+
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
+
"max_grad_norm": 0.5,
|
74 |
+
"normalize_advantage": false,
|
75 |
+
"observation_space": {
|
76 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
77 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
78 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
79 |
+
"_shape": null,
|
80 |
+
"dtype": null,
|
81 |
+
"_np_random": null
|
82 |
+
},
|
83 |
+
"action_space": {
|
84 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
85 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
86 |
+
"dtype": "float32",
|
87 |
+
"_shape": [
|
88 |
+
3
|
89 |
+
],
|
90 |
+
"low": "[-1. -1. -1.]",
|
91 |
+
"high": "[1. 1. 1.]",
|
92 |
+
"bounded_below": "[ True True True]",
|
93 |
+
"bounded_above": "[ True True True]",
|
94 |
+
"_np_random": null
|
95 |
+
},
|
96 |
+
"n_envs": 4
|
97 |
+
}
|
a2c-RobotArm/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba57a9a74ae29668e214b54e60dfd2031a10de47ca62ee7669aa25211c55810b
|
3 |
+
size 45438
|
a2c-RobotArm/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:acecfa7553db5242e5784de890bc010a8eb06a63057be303e402dab5527e236f
|
3 |
+
size 46718
|
a2c-RobotArm/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-RobotArm/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f79b5821550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f79b5820b00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682034945957005092, "learning_rate": 0.0009, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/TX2/SH/LkoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAgdLKPgtUwbs3zg4/gdLKPgtUwbs3zg4/gdLKPgtUwbs3zg4/gdLKPgtUwbs3zg4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUAijP4W1yz+0oMW+uW7Gv4NEuj8f6Ny/P+rFP3K9tr9igis/YYe1PwjJkj85dzm9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACB0so+C1TBuzfODj+dI5M9MPNtunEAeD2B0so+C1TBuzfODj+dI5M9MPNtunEAeD2B0so+C1TBuzfODj+dI5M9MPNtunEAeD2B0so+C1TBuzfODj+dI5M9MPNtunEAeD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.39613727 -0.00589991 0.5578341 ]\n [ 0.39613727 -0.00589991 0.5578341 ]\n [ 0.39613727 -0.00589991 0.5578341 ]\n [ 0.39613727 -0.00589991 0.5578341 ]]", "desired_goal": "[[ 1.2736912 1.591477 -0.3859917 ]\n [-1.550254 1.4552158 -1.7258338 ]\n [ 1.5462111 -1.4276564 0.66995823]\n [ 1.4181939 1.14676 -0.04527972]]", "observation": "[[ 0.39613727 -0.00589991 0.5578341 0.07184527 -0.00090771 0.0605473 ]\n [ 0.39613727 -0.00589991 0.5578341 0.07184527 -0.00090771 0.0605473 ]\n [ 0.39613727 -0.00589991 0.5578341 0.07184527 -0.00090771 0.0605473 ]\n [ 0.39613727 -0.00589991 0.5578341 0.07184527 -0.00090771 0.0605473 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzX33PLUYeDxoDoU+c4QUPkT5DT7RUkg+QDTFPJJWIT08LEg9QhomvOWRoT1Rbno+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03021135 0.01514261 0.25987554]\n [ 0.1450365 0.13864619 0.19562842]\n [ 0.02407277 0.0393892 0.04887031]\n [-0.0101381 0.07889155 0.24456145]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIojzcAKzAcCUhpRSlIwBbJRLMowBdJRHQLYxsW6K+BZ1fZQoaAZoCWgPQwh3+GuyRn38v5SGlFKUaBVLMmgWR0C2MY6qwQlKdX2UKGgGaAloD0MI7GrylNV097+UhpRSlGgVSzJoFkdAtjFrm1YyPHV9lChoBmgJaA9DCOqURzfCIgTAlIaUUpRoFUsyaBZHQLYxSMfA9FF1fZQoaAZoCWgPQwjSiQRTzewFwJSGlFKUaBVLMmgWR0C2MkhInSfEdX2UKGgGaAloD0MIk8MnnUhw87+UhpRSlGgVSzJoFkdAtjIlcIJJG3V9lChoBmgJaA9DCBA//z14TQDAlIaUUpRoFUsyaBZHQLYyAmaH9FZ1fZQoaAZoCWgPQwghlWJH41Djv5SGlFKUaBVLMmgWR0C2Md+clPaddX2UKGgGaAloD0MIPXyZKELq6b+UhpRSlGgVSzJoFkdAtjLiIxgy/XV9lChoBmgJaA9DCDm0yHa+nwTAlIaUUpRoFUsyaBZHQLYyv1tO2y91fZQoaAZoCWgPQwibrie6Lnzvv5SGlFKUaBVLMmgWR0C2MpxPTG5udX2UKGgGaAloD0MIGJRpNLkY5r+UhpRSlGgVSzJoFkdAtjJ5fiPyTnV9lChoBmgJaA9DCKlNnNzv0ADAlIaUUpRoFUsyaBZHQLYzdonKGL11fZQoaAZoCWgPQwhyGMxfIfMKwJSGlFKUaBVLMmgWR0C2M1O36Q/5dX2UKGgGaAloD0MI1XlU/N/RCsCUhpRSlGgVSzJoFkdAtjMwpLEk0XV9lChoBmgJaA9DCCnrNxPThd+/lIaUUpRoFUsyaBZHQLYzDciGFi91fZQoaAZoCWgPQwgGS3UBL/P1v5SGlFKUaBVLMmgWR0C2NB4cWCVbdX2UKGgGaAloD0MIPZzAdFp3+b+UhpRSlGgVSzJoFkdAtjP7VI7NjnV9lChoBmgJaA9DCKhxb37DxOW/lIaUUpRoFUsyaBZHQLYz2Ds+mnB1fZQoaAZoCWgPQwj1ZWmn5nLuv5SGlFKUaBVLMmgWR0C2M7VWXC0odX2UKGgGaAloD0MI5e0IpwVv8r+UhpRSlGgVSzJoFkdAtjSzCDVYp3V9lChoBmgJaA9DCMjT8gNXee2/lIaUUpRoFUsyaBZHQLY0kDw6QvJ1fZQoaAZoCWgPQwgt7GmHv6bsv5SGlFKUaBVLMmgWR0C2NG0xdpqRdX2UKGgGaAloD0MI0A8jhEc7B8CUhpRSlGgVSzJoFkdAtjRKPYFqz3V9lChoBmgJaA9DCPp6vma5LPu/lIaUUpRoFUsyaBZHQLY1WIEKVpt1fZQoaAZoCWgPQwhfRrHc0mr7v5SGlFKUaBVLMmgWR0C2NTWxptaZdX2UKGgGaAloD0MI1Ce5wyYy4r+UhpRSlGgVSzJoFkdAtjUSmALApXV9lChoBmgJaA9DCBsN4C2QwAPAlIaUUpRoFUsyaBZHQLY077OE/Sp1fZQoaAZoCWgPQwhZ/RGGAcv8v5SGlFKUaBVLMmgWR0C2Ne2ecx0udX2UKGgGaAloD0MIE0TdByB1/b+UhpRSlGgVSzJoFkdAtjXK0+kgwHV9lChoBmgJaA9DCMTSwI9q2PG/lIaUUpRoFUsyaBZHQLY1p/6O5rh1fZQoaAZoCWgPQwhC6+HLRJH3v5SGlFKUaBVLMmgWR0C2NYUnXumadX2UKGgGaAloD0MISl8IOe//AsCUhpRSlGgVSzJoFkdAtjZ+I42jwnV9lChoBmgJaA9DCC9SKAtfXwTAlIaUUpRoFUsyaBZHQLY2W0Bfa6B1fZQoaAZoCWgPQwiIg4QoX9Dlv5SGlFKUaBVLMmgWR0C2NjgdjoZAdX2UKGgGaAloD0MIKQmJtI0/6L+UhpRSlGgVSzJoFkdAtjYVKXfIjnV9lChoBmgJaA9DCLH6IwwDFvK/lIaUUpRoFUsyaBZHQLY3E2OyVwB1fZQoaAZoCWgPQwhmMbH5uLbxv5SGlFKUaBVLMmgWR0C2NvCJKraNdX2UKGgGaAloD0MIEce6uI0G37+UhpRSlGgVSzJoFkdAtjbNeokzGnV9lChoBmgJaA9DCOPfZ1w4ENC/lIaUUpRoFUsyaBZHQLY2qrUb1h91fZQoaAZoCWgPQwgSnzvB/isDwJSGlFKUaBVLMmgWR0C2N6Z++dsjdX2UKGgGaAloD0MIEcXkDTCz97+UhpRSlGgVSzJoFkdAtjeDrWy1NXV9lChoBmgJaA9DCCxGXWvv0/m/lIaUUpRoFUsyaBZHQLY3YKJl8PZ1fZQoaAZoCWgPQwhkrgyqDc7mv5SGlFKUaBVLMmgWR0C2Nz265Gz9dX2UKGgGaAloD0MIalA0D2BR+b+UhpRSlGgVSzJoFkdAtjg3Pv8ZUHV9lChoBmgJaA9DCOeMKO0NPvq/lIaUUpRoFUsyaBZHQLY4FE5Qxet1fZQoaAZoCWgPQwivQzUlWYf0v5SGlFKUaBVLMmgWR0C2N/ExEfDDdX2UKGgGaAloD0MIg92wbVGm87+UhpRSlGgVSzJoFkdAtjfOakRBeHV9lChoBmgJaA9DCHxgx3+BoArAlIaUUpRoFUsyaBZHQLY44QmeDnN1fZQoaAZoCWgPQwj+CwQBMjQAwJSGlFKUaBVLMmgWR0C2OL6j8DSxdX2UKGgGaAloD0MItww4S8kSBsCUhpRSlGgVSzJoFkdAtjibkGRmsnV9lChoBmgJaA9DCMReKGA7GPK/lIaUUpRoFUsyaBZHQLY4eL3bmEJ1fZQoaAZoCWgPQwhfsvFgi93yv5SGlFKUaBVLMmgWR0C2OXWjsUqQdX2UKGgGaAloD0MIPNnNjH609r+UhpRSlGgVSzJoFkdAtjlS2DxsmHV9lChoBmgJaA9DCNZVgVoMvgLAlIaUUpRoFUsyaBZHQLY5L9U0elt1fZQoaAZoCWgPQwgcKVsk7Yb4v5SGlFKUaBVLMmgWR0C2OQ0EX+ERdX2UKGgGaAloD0MIZqAy/n1G+7+UhpRSlGgVSzJoFkdAtjoeYBvJinV9lChoBmgJaA9DCKFI93MKsvK/lIaUUpRoFUsyaBZHQLY5+6XSjQB1fZQoaAZoCWgPQwh1zHnGviTzv5SGlFKUaBVLMmgWR0C2OditJWeZdX2UKGgGaAloD0MIhe/9Ddrr97+UhpRSlGgVSzJoFkdAtjm2VY6nznV9lChoBmgJaA9DCAQ3UrZIGvm/lIaUUpRoFUsyaBZHQLY6x8lHBk91fZQoaAZoCWgPQwiSk4lbBXH5v5SGlFKUaBVLMmgWR0C2OqVqzqrzdX2UKGgGaAloD0MIkWKARBOo4r+UhpRSlGgVSzJoFkdAtjqCQxN7B3V9lChoBmgJaA9DCJIIjWDjeu2/lIaUUpRoFUsyaBZHQLY6X20iQkp1fZQoaAZoCWgPQwgvppnudZL1v5SGlFKUaBVLMmgWR0C2O2seXAuadX2UKGgGaAloD0MIBeCfUiUK/b+UhpRSlGgVSzJoFkdAtjtIstkFwHV9lChoBmgJaA9DCAFO7+L9uO2/lIaUUpRoFUsyaBZHQLY7JapPykN1fZQoaAZoCWgPQwgeU3dlFwz7v5SGlFKUaBVLMmgWR0C2OwLdFfAsdX2UKGgGaAloD0MIYDyDhv7J/r+UhpRSlGgVSzJoFkdAtjwGdQO4G3V9lChoBmgJaA9DCO4jtybdlt6/lIaUUpRoFUsyaBZHQLY746mwaBJ1fZQoaAZoCWgPQwgHCryTTy8EwJSGlFKUaBVLMmgWR0C2O8Cm/FisdX2UKGgGaAloD0MICtrk8Ekn57+UhpRSlGgVSzJoFkdAtjud0YCQtHV9lChoBmgJaA9DCLK9FvTeWPa/lIaUUpRoFUsyaBZHQLY8md1+y7h1fZQoaAZoCWgPQwhKDW0ANqDgv5SGlFKUaBVLMmgWR0C2PHcHfMwDdX2UKGgGaAloD0MIokJ1c/G367+UhpRSlGgVSzJoFkdAtjxT52yLRHV9lChoBmgJaA9DCAMixJWzNwLAlIaUUpRoFUsyaBZHQLY8MQ+EAYJ1fZQoaAZoCWgPQwjZeoZwzLLov5SGlFKUaBVLMmgWR0C2PSxSDRMOdX2UKGgGaAloD0MIdy6M9KL25r+UhpRSlGgVSzJoFkdAtj0Jat9x63V9lChoBmgJaA9DCL4uw3+6Qfa/lIaUUpRoFUsyaBZHQLY85jnV5KR1fZQoaAZoCWgPQwjz5nCt9jD4v5SGlFKUaBVLMmgWR0C2PMNtIkJKdX2UKGgGaAloD0MIeedQhqoY6L+UhpRSlGgVSzJoFkdAtj3BYmsvI3V9lChoBmgJaA9DCKnZA63AUP2/lIaUUpRoFUsyaBZHQLY9no0ygwp1fZQoaAZoCWgPQwiTbkvkgjPsv5SGlFKUaBVLMmgWR0C2PXtrTH81dX2UKGgGaAloD0MIh+C4jJsa0r+UhpRSlGgVSzJoFkdAtj1Yiliz9nV9lChoBmgJaA9DCNUI/Uy9Lv6/lIaUUpRoFUsyaBZHQLY+VT4tYjl1fZQoaAZoCWgPQwhJLZRMTm3mv5SGlFKUaBVLMmgWR0C2PjJwfhdddX2UKGgGaAloD0MIQQ3fwroRBcCUhpRSlGgVSzJoFkdAtj4PYh+vyXV9lChoBmgJaA9DCLyxoDAoU+m/lIaUUpRoFUsyaBZHQLY97JSBK+V1fZQoaAZoCWgPQwitpuuJrgv1v5SGlFKUaBVLMmgWR0C2PuuZ9d/sdX2UKGgGaAloD0MID0OrkzNU+7+UhpRSlGgVSzJoFkdAtj7IzvZyuXV9lChoBmgJaA9DCGPyBpj5DgHAlIaUUpRoFUsyaBZHQLY+pcsDnvF1fZQoaAZoCWgPQwjW5v9VRw73v5SGlFKUaBVLMmgWR0C2PoMGHHmzdX2UKGgGaAloD0MIaxFRTN6A/L+UhpRSlGgVSzJoFkdAtj971YhdMXV9lChoBmgJaA9DCIElV7H4bQDAlIaUUpRoFUsyaBZHQLY/WOmixml1fZQoaAZoCWgPQwgE4+DSMWflv5SGlFKUaBVLMmgWR0C2PzXDR+jNdX2UKGgGaAloD0MItK88SE8xBMCUhpRSlGgVSzJoFkdAtj8S1Cw8n3V9lChoBmgJaA9DCFjmrboOlfK/lIaUUpRoFUsyaBZHQLZAJNeMQ3B1fZQoaAZoCWgPQwh551CGqlj5v5SGlFKUaBVLMmgWR0C2QAIHLRrrdX2UKGgGaAloD0MI0QMfgxWn/r+UhpRSlGgVSzJoFkdAtj/faIvalHV9lChoBmgJaA9DCJtXdVYLLPy/lIaUUpRoFUsyaBZHQLY/vJDVpbl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (330 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.0692042429698632, "std_reward": 0.5413769137181378, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-21T01:30:55.643189"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e85a51d49c437358b5582217e51a353916e9ee65bb6914cb45657db8ab7c180
|
3 |
+
size 2381
|