ArBert commited on
Commit
9994b81
1 Parent(s): c4c64e8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -38
README.md CHANGED
@@ -2,8 +2,6 @@
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
- datasets:
6
- - conll2003
7
  metrics:
8
  - precision
9
  - recall
@@ -11,27 +9,7 @@ metrics:
11
  - accuracy
12
  model-index:
13
  - name: bert-base-uncased-finetuned-ner
14
- results:
15
- - task:
16
- name: Token Classification
17
- type: token-classification
18
- dataset:
19
- name: conll2003
20
- type: conll2003
21
- args: conll2003
22
- metrics:
23
- - name: Precision
24
- type: precision
25
- value: 0.9412415624654199
26
- - name: Recall
27
- type: recall
28
- value: 0.9515605772457769
29
- - name: F1
30
- type: f1
31
- value: 0.9463729417000445
32
- - name: Accuracy
33
- type: accuracy
34
- value: 0.9869572815225507
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -39,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
39
 
40
  # bert-base-uncased-finetuned-ner
41
 
42
- This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset.
43
  It achieves the following results on the evaluation set:
44
- - Loss: 0.0605
45
- - Precision: 0.9412
46
- - Recall: 0.9516
47
- - F1: 0.9464
48
- - Accuracy: 0.9870
49
 
50
  ## Model description
51
 
@@ -65,8 +43,8 @@ More information needed
65
 
66
  The following hyperparameters were used during training:
67
  - learning_rate: 2e-05
68
- - train_batch_size: 8
69
- - eval_batch_size: 8
70
  - seed: 42
71
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
  - lr_scheduler_type: linear
@@ -76,14 +54,14 @@ The following hyperparameters were used during training:
76
 
77
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
- | 0.0786 | 1.0 | 1756 | 0.0573 | 0.9274 | 0.9341 | 0.9307 | 0.9843 |
80
- | 0.039 | 2.0 | 3512 | 0.0566 | 0.9370 | 0.9472 | 0.9421 | 0.9863 |
81
- | 0.0217 | 3.0 | 5268 | 0.0605 | 0.9412 | 0.9516 | 0.9464 | 0.9870 |
82
 
83
 
84
  ### Framework versions
85
 
86
- - Transformers 4.14.1
87
- - Pytorch 1.10.1
88
- - Datasets 1.17.0
89
- - Tokenizers 0.10.3
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
 
 
5
  metrics:
6
  - precision
7
  - recall
 
9
  - accuracy
10
  model-index:
11
  - name: bert-base-uncased-finetuned-ner
12
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
17
 
18
  # bert-base-uncased-finetuned-ner
19
 
20
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.0905
23
+ - Precision: 0.9068
24
+ - Recall: 0.9200
25
+ - F1: 0.9133
26
+ - Accuracy: 0.9787
27
 
28
  ## Model description
29
 
 
43
 
44
  The following hyperparameters were used during training:
45
  - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
 
54
 
55
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.1266 | 1.0 | 1123 | 0.0952 | 0.8939 | 0.8869 | 0.8904 | 0.9742 |
58
+ | 0.0741 | 2.0 | 2246 | 0.0866 | 0.8936 | 0.9247 | 0.9089 | 0.9774 |
59
+ | 0.0496 | 3.0 | 3369 | 0.0905 | 0.9068 | 0.9200 | 0.9133 | 0.9787 |
60
 
61
 
62
  ### Framework versions
63
 
64
+ - Transformers 4.16.2
65
+ - Pytorch 1.10.0+cu111
66
+ - Datasets 1.18.3
67
+ - Tokenizers 0.11.0