update model card README.md
Browse files
README.md
CHANGED
@@ -2,8 +2,6 @@
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
-
datasets:
|
6 |
-
- conll2003
|
7 |
metrics:
|
8 |
- precision
|
9 |
- recall
|
@@ -11,27 +9,7 @@ metrics:
|
|
11 |
- accuracy
|
12 |
model-index:
|
13 |
- name: bert-base-uncased-finetuned-ner
|
14 |
-
results:
|
15 |
-
- task:
|
16 |
-
name: Token Classification
|
17 |
-
type: token-classification
|
18 |
-
dataset:
|
19 |
-
name: conll2003
|
20 |
-
type: conll2003
|
21 |
-
args: conll2003
|
22 |
-
metrics:
|
23 |
-
- name: Precision
|
24 |
-
type: precision
|
25 |
-
value: 0.9412415624654199
|
26 |
-
- name: Recall
|
27 |
-
type: recall
|
28 |
-
value: 0.9515605772457769
|
29 |
-
- name: F1
|
30 |
-
type: f1
|
31 |
-
value: 0.9463729417000445
|
32 |
-
- name: Accuracy
|
33 |
-
type: accuracy
|
34 |
-
value: 0.9869572815225507
|
35 |
---
|
36 |
|
37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -39,13 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
39 |
|
40 |
# bert-base-uncased-finetuned-ner
|
41 |
|
42 |
-
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the
|
43 |
It achieves the following results on the evaluation set:
|
44 |
-
- Loss: 0.
|
45 |
-
- Precision: 0.
|
46 |
-
- Recall: 0.
|
47 |
-
- F1: 0.
|
48 |
-
- Accuracy: 0.
|
49 |
|
50 |
## Model description
|
51 |
|
@@ -65,8 +43,8 @@ More information needed
|
|
65 |
|
66 |
The following hyperparameters were used during training:
|
67 |
- learning_rate: 2e-05
|
68 |
-
- train_batch_size:
|
69 |
-
- eval_batch_size:
|
70 |
- seed: 42
|
71 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
72 |
- lr_scheduler_type: linear
|
@@ -76,14 +54,14 @@ The following hyperparameters were used during training:
|
|
76 |
|
77 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
78 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
|
83 |
|
84 |
### Framework versions
|
85 |
|
86 |
-
- Transformers 4.
|
87 |
-
- Pytorch 1.10.
|
88 |
-
- Datasets 1.
|
89 |
-
- Tokenizers 0.
|
|
|
2 |
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
|
|
|
|
5 |
metrics:
|
6 |
- precision
|
7 |
- recall
|
|
|
9 |
- accuracy
|
10 |
model-index:
|
11 |
- name: bert-base-uncased-finetuned-ner
|
12 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
---
|
14 |
|
15 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
17 |
|
18 |
# bert-base-uncased-finetuned-ner
|
19 |
|
20 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0905
|
23 |
+
- Precision: 0.9068
|
24 |
+
- Recall: 0.9200
|
25 |
+
- F1: 0.9133
|
26 |
+
- Accuracy: 0.9787
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.1266 | 1.0 | 1123 | 0.0952 | 0.8939 | 0.8869 | 0.8904 | 0.9742 |
|
58 |
+
| 0.0741 | 2.0 | 2246 | 0.0866 | 0.8936 | 0.9247 | 0.9089 | 0.9774 |
|
59 |
+
| 0.0496 | 3.0 | 3369 | 0.0905 | 0.9068 | 0.9200 | 0.9133 | 0.9787 |
|
60 |
|
61 |
|
62 |
### Framework versions
|
63 |
|
64 |
+
- Transformers 4.16.2
|
65 |
+
- Pytorch 1.10.0+cu111
|
66 |
+
- Datasets 1.18.3
|
67 |
+
- Tokenizers 0.11.0
|