File size: 1,760 Bytes
be2b930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: KUCI_xlm_roberta_base_Finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# KUCI_xlm_roberta_base_Finetuned

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0342
- F1: 0.7762

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step  | Validation Loss | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.6869        | 1.0   | 5196  | 0.6337          | 0.7446 |
| 0.5599        | 2.0   | 10392 | 0.6582          | 0.7644 |
| 0.462         | 3.0   | 15588 | 0.6245          | 0.7705 |
| 0.358         | 4.0   | 20784 | 0.7001          | 0.7736 |
| 0.2786        | 5.0   | 25980 | 0.7545          | 0.7765 |
| 0.2248        | 6.0   | 31176 | 0.9416          | 0.7776 |
| 0.1889        | 7.0   | 36372 | 1.0342          | 0.7762 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1