Arun Kumar Tiwary
commited on
Commit
•
6425303
1
Parent(s):
4a7f3ab
Upload Copy_of_Alpaca_+_Llama_3_8b_full_example.ipynb
Browse files
Copy_of_Alpaca_+_Llama_3_8b_full_example.ipynb
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"source": [
|
6 |
+
"To run this, press \"*Runtime*\" and press \"*Run all*\" on a **free** Tesla T4 Google Colab instance!\n",
|
7 |
+
"<div class=\"align-center\">\n",
|
8 |
+
" <a href=\"https://github.com/unslothai/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n",
|
9 |
+
" <a href=\"https://discord.gg/u54VK8m8tk\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Discord button.png\" width=\"145\"></a>\n",
|
10 |
+
" <a href=\"https://ko-fi.com/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Kofi button.png\" width=\"145\"></a></a> Join Discord if you need help + ⭐ <i>Star us on <a href=\"https://github.com/unslothai/unsloth\">Github</a> </i> ⭐\n",
|
11 |
+
"</div>\n",
|
12 |
+
"\n",
|
13 |
+
"To install Unsloth on your own computer, follow the installation instructions on our Github page [here](https://github.com/unslothai/unsloth#installation-instructions---conda).\n",
|
14 |
+
"\n",
|
15 |
+
"You will learn how to do [data prep](#Data), how to [train](#Train), how to [run the model](#Inference), & [how to save it](#Save) (eg for Llama.cpp).\n",
|
16 |
+
"\n",
|
17 |
+
"**[NEW] Llama-3 8b is trained on a crazy 15 trillion tokens! Llama-2 was 2 trillion.**"
|
18 |
+
],
|
19 |
+
"metadata": {
|
20 |
+
"id": "IqM-T1RTzY6C"
|
21 |
+
}
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": null,
|
26 |
+
"metadata": {
|
27 |
+
"id": "2eSvM9zX_2d3"
|
28 |
+
},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"%%capture\n",
|
32 |
+
"# Installs Unsloth, Xformers (Flash Attention) and all other packages!\n",
|
33 |
+
"!pip install \"unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git\"\n",
|
34 |
+
"!pip install --no-deps \"xformers<0.0.26\" trl peft accelerate bitsandbytes"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "markdown",
|
39 |
+
"source": [
|
40 |
+
"* We support Llama, Mistral, CodeLlama, TinyLlama, Vicuna, Open Hermes etc\n",
|
41 |
+
"* And Yi, Qwen ([llamafied](https://huggingface.co/models?sort=trending&search=qwen+llama)), Deepseek, all Llama, Mistral derived archs.\n",
|
42 |
+
"* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n",
|
43 |
+
"* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n",
|
44 |
+
"* [**NEW**] With [PR 26037](https://github.com/huggingface/transformers/pull/26037), we support downloading 4bit models **4x faster**! [Our repo](https://huggingface.co/unsloth) has Llama, Mistral 4bit models."
|
45 |
+
],
|
46 |
+
"metadata": {
|
47 |
+
"id": "r2v_X2fA0Df5"
|
48 |
+
}
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": null,
|
53 |
+
"metadata": {
|
54 |
+
"id": "QmUBVEnvCDJv"
|
55 |
+
},
|
56 |
+
"outputs": [],
|
57 |
+
"source": [
|
58 |
+
"from unsloth import FastLanguageModel\n",
|
59 |
+
"import torch\n",
|
60 |
+
"max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n",
|
61 |
+
"dtype = None # Noad_in_4bit = True # Use 4bit quanbe False.\n",
|
62 |
+
"\n",
|
63 |
+
"# 4bit pre quantized models w no OOMs.\n",
|
64 |
+
"fourbit_models = [\n",
|
65 |
+
" \"unslothistral-7b-instruct-v0.2-bnb-4bit\",\n",
|
66 |
+
" \"unsloth/llama-2-7b-bnb-4bit\",\n",
|
67 |
+
" \"unsloth/gemma-7b-bnb-4bit\",\n",
|
68 |
+
" nstruct version of Gemma 7b\n",
|
69 |
+
" \"unsloth/gemma-2b-bnb-4bit\",\n",
|
70 |
+
" \"unsloth/gemma-2 Gemma 2b\n",
|
71 |
+
" \"unsloth/llama-3-8b-bnb-4bit\", # [NEW] 15 Trillion token Llama-3\n",
|
72 |
+
"] # More models at https://huggingface.co/unslodel.from_pretrained(\n",
|
73 |
+
" model_name = \"unsloth/llama-3-8b-bnb-4bit\",\n",
|
74 |
+
" max_seq_length = max_seq_length,\n",
|
75 |
+
" dtype = dtype,\n",
|
76 |
+
" load_in_4bit = load_in_4bit,\n",
|
77 |
+
" token = \"\"\"\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n",
|
78 |
+
")"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "markdown",
|
83 |
+
"source": [
|
84 |
+
"We now add LoRA adapters so we only need to update 1 to 10% of all parameters!"
|
85 |
+
],
|
86 |
+
"metadata": {
|
87 |
+
"id": "SXd9bTZd1aaL"
|
88 |
+
}
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": null,
|
93 |
+
"metadata": {
|
94 |
+
"id": "6bZsfBuZDeCL"
|
95 |
+
},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"model = FastLanguageModel.get_peft_model(\n",
|
99 |
+
" model,\n",
|
100 |
+
" r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n",
|
101 |
+
" target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n",
|
102 |
+
" \"gate_proj\", \"up_proj\", \"down_proj\",],\n",
|
103 |
+
" lora_alpha = 16,\n",
|
104 |
+
" lora_dropout = 0, # Supports any, but = 0 is optimized\n",
|
105 |
+
" bias = \"none\", # Supports any, but = \"none\" is optimized\n",
|
106 |
+
" # [NEW] \"unsloth\" uses 30% less VRAM, fits 2x larger batch sizes!\n",
|
107 |
+
" use_gradient_checkpointing = \"unsloth\", # True or \"unsloth\" for very long context\n",
|
108 |
+
" random_state = 3407,\n",
|
109 |
+
" use_rslora = False, # We support rank stabilized LoRA\n",
|
110 |
+
" loftq_config = None, # And LoftQ\n",
|
111 |
+
")"
|
112 |
+
]
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "markdown",
|
116 |
+
"source": [
|
117 |
+
"<a name=\"Data\"></a>\n",
|
118 |
+
"### Data Prep\n",
|
119 |
+
"We now use the Alpaca dataset from [yahma](https://huggingface.co/datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep.\n",
|
120 |
+
"\n",
|
121 |
+
"**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n",
|
122 |
+
"\n",
|
123 |
+
"**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!\n",
|
124 |
+
"\n",
|
125 |
+
"If you want to use the `ChatML` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing).\n",
|
126 |
+
"\n",
|
127 |
+
"For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)."
|
128 |
+
],
|
129 |
+
"metadata": {
|
130 |
+
"id": "vITh0KVJ10qX"
|
131 |
+
}
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": null,
|
136 |
+
"metadata": {
|
137 |
+
"id": "LjY75GoYUCB8"
|
138 |
+
},
|
139 |
+
"outputs": [],
|
140 |
+
"source": [
|
141 |
+
"alpaca_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
|
142 |
+
"\n",
|
143 |
+
"### Instruction:\n",
|
144 |
+
"{}\n",
|
145 |
+
"\n",
|
146 |
+
"### Input:\n",
|
147 |
+
"{}\n",
|
148 |
+
"\n",
|
149 |
+
"### Response:\n",
|
150 |
+
"{}\"\"\"\n",
|
151 |
+
"\n",
|
152 |
+
"EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN\n",
|
153 |
+
"def formatting_prompts_func(examples):\n",
|
154 |
+
" instructions = examples[\"instruction\"]\n",
|
155 |
+
" inputs = examples[\"input\"]\n",
|
156 |
+
" outputs = examples[\"output\"]\n",
|
157 |
+
" texts = []\n",
|
158 |
+
" for instruction, input, output in zip(instructions, inputs, outputs):\n",
|
159 |
+
" # Must add EOS_TOKEN, otherwise your generation will go on forever!\n",
|
160 |
+
" text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN\n",
|
161 |
+
" texts.append(text)\n",
|
162 |
+
" return { \"text\" : texts, }\n",
|
163 |
+
"pass\n",
|
164 |
+
"\n",
|
165 |
+
"from datasets import load_dataset\n",
|
166 |
+
"dataset = load_dataset(\"yahma/alpaca-cleaned\", split = \"train\")\n",
|
167 |
+
"dataset = dataset.map(formatting_prompts_func, batched = True,)"
|
168 |
+
]
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"cell_type": "markdown",
|
172 |
+
"source": [
|
173 |
+
"<a name=\"Train\"></a>\n",
|
174 |
+
"### Train the model\n",
|
175 |
+
"Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!"
|
176 |
+
],
|
177 |
+
"metadata": {
|
178 |
+
"id": "idAEIeSQ3xdS"
|
179 |
+
}
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"cell_type": "code",
|
183 |
+
"execution_count": null,
|
184 |
+
"metadata": {
|
185 |
+
"id": "95_Nn-89DhsL"
|
186 |
+
},
|
187 |
+
"outputs": [],
|
188 |
+
"source": [
|
189 |
+
"from trl import SFTTrainer\n",
|
190 |
+
"from transformers import TrainingArguments\n",
|
191 |
+
"\n",
|
192 |
+
"trainer = SFTTrainer(\n",
|
193 |
+
" model = model,\n",
|
194 |
+
" tokenizer = tokenizer,\n",
|
195 |
+
" train_dataset = dataset,\n",
|
196 |
+
" dataset_text_field = \"text\",\n",
|
197 |
+
" max_seq_length = max_seq_length,\n",
|
198 |
+
" dataset_num_proc = 2,\n",
|
199 |
+
" packing = False, # Can make training 5x faster for short sequences.\n",
|
200 |
+
" args = TrainingArguments(\n",
|
201 |
+
" per_device_train_batch_size = 2,\n",
|
202 |
+
" gradient_accumulation_steps = 4,\n",
|
203 |
+
" warmup_steps = 5,\n",
|
204 |
+
" max_steps = 60,\n",
|
205 |
+
" learning_rate = 2e-4,\n",
|
206 |
+
" fp16 = not torch.cuda.is_bf16_supported(),\n",
|
207 |
+
" bf16 = torch.cuda.is_bf16_supported(),\n",
|
208 |
+
" logging_steps = 1,\n",
|
209 |
+
" optim = \"adamw_8bit\",\n",
|
210 |
+
" weight_decay = 0.01,\n",
|
211 |
+
" lr_scheduler_type = \"linear\",\n",
|
212 |
+
" seed = 3407,\n",
|
213 |
+
" output_dir = \"outputs\",\n",
|
214 |
+
" ),\n",
|
215 |
+
")"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": null,
|
221 |
+
"metadata": {
|
222 |
+
"id": "2ejIt2xSNKKp",
|
223 |
+
"cellView": "form"
|
224 |
+
},
|
225 |
+
"outputs": [],
|
226 |
+
"source": [
|
227 |
+
"#@title Show current memory stats\n",
|
228 |
+
"gpu_stats = torch.cuda.get_device_properties(0)\n",
|
229 |
+
"start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
|
230 |
+
"max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n",
|
231 |
+
"print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n",
|
232 |
+
"print(f\"{start_gpu_memory} GB of memory reserved.\")"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"execution_count": null,
|
238 |
+
"metadata": {
|
239 |
+
"id": "yqxqAZ7KJ4oL"
|
240 |
+
},
|
241 |
+
"outputs": [],
|
242 |
+
"source": [
|
243 |
+
"trainer_stats = trainer.train()"
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"cell_type": "code",
|
248 |
+
"execution_count": null,
|
249 |
+
"metadata": {
|
250 |
+
"id": "pCqnaKmlO1U9",
|
251 |
+
"cellView": "form"
|
252 |
+
},
|
253 |
+
"outputs": [],
|
254 |
+
"source": [
|
255 |
+
"#@title Show final memory and time stats\n",
|
256 |
+
"used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
|
257 |
+
"used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n",
|
258 |
+
"used_percentage = round(used_memory /max_memory*100, 3)\n",
|
259 |
+
"lora_percentage = round(used_memory_for_lora/max_memory*100, 3)\n",
|
260 |
+
"print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n",
|
261 |
+
"print(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\n",
|
262 |
+
"print(f\"Peak reserved memory = {used_memory} GB.\")\n",
|
263 |
+
"print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n",
|
264 |
+
"print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n",
|
265 |
+
"print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")"
|
266 |
+
]
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"cell_type": "markdown",
|
270 |
+
"source": [
|
271 |
+
"<a name=\"Inference\"></a>\n",
|
272 |
+
"### Inference\n",
|
273 |
+
"Let's run the model! You can change the instruction and input - leave the output blank!"
|
274 |
+
],
|
275 |
+
"metadata": {
|
276 |
+
"id": "ekOmTR1hSNcr"
|
277 |
+
}
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"source": [
|
282 |
+
"# alpaca_prompt = Copied from above\n",
|
283 |
+
"FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
|
284 |
+
"inputs = tokenizer(\n",
|
285 |
+
"[\n",
|
286 |
+
" alpaca_prompt.format(\n",
|
287 |
+
" \"Continue the fibonnaci sequence.\", # instruction\n",
|
288 |
+
" \"1, 1, 2, 3, 5, 8\", # input\n",
|
289 |
+
" \"\", # output - leave this blank for generation!\n",
|
290 |
+
" )\n",
|
291 |
+
"], return_tensors = \"pt\").to(\"cuda\")\n",
|
292 |
+
"\n",
|
293 |
+
"outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
|
294 |
+
"tokenizer.batch_decode(outputs)"
|
295 |
+
],
|
296 |
+
"metadata": {
|
297 |
+
"id": "kR3gIAX-SM2q"
|
298 |
+
},
|
299 |
+
"execution_count": null,
|
300 |
+
"outputs": []
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"cell_type": "markdown",
|
304 |
+
"source": [
|
305 |
+
" You can also use a `TextStreamer` for continuous inference - so you can see the generation token by token, instead of waiting the whole time!"
|
306 |
+
],
|
307 |
+
"metadata": {
|
308 |
+
"id": "CrSvZObor0lY"
|
309 |
+
}
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "code",
|
313 |
+
"source": [
|
314 |
+
"# alpaca_prompt = Copied from above\n",
|
315 |
+
"FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
|
316 |
+
"inputs = tokenizer(\n",
|
317 |
+
"[\n",
|
318 |
+
" alpaca_prompt.format(\n",
|
319 |
+
" \"Continue the fibonnaci sequence.\", # instruction\n",
|
320 |
+
" \"1, 1, 2, 3, 5, 8\", # input\n",
|
321 |
+
" \"\", # output - leave this blank for generation!\n",
|
322 |
+
" )\n",
|
323 |
+
"], return_tensors = \"pt\").to(\"cuda\")\n",
|
324 |
+
"\n",
|
325 |
+
"from transformers import TextStreamer\n",
|
326 |
+
"text_streamer = TextStreamer(tokenizer)\n",
|
327 |
+
"_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)"
|
328 |
+
],
|
329 |
+
"metadata": {
|
330 |
+
"id": "e2pEuRb1r2Vg"
|
331 |
+
},
|
332 |
+
"execution_count": null,
|
333 |
+
"outputs": []
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"cell_type": "markdown",
|
337 |
+
"source": [
|
338 |
+
"<a name=\"Save\"></a>\n",
|
339 |
+
"### Saving, loading finetuned models\n",
|
340 |
+
"To save the final model as LoRA adapters, either use Huggingface's `push_to_hub` for an online save or `save_pretrained` for a local save.\n",
|
341 |
+
"\n",
|
342 |
+
"**[NOTE]** This ONLY saves the LoRA adapters, and not the full model. To save to 16bit or GGUF, scroll down!"
|
343 |
+
],
|
344 |
+
"metadata": {
|
345 |
+
"id": "uMuVrWbjAzhc"
|
346 |
+
}
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"cell_type": "code",
|
350 |
+
"source": [
|
351 |
+
"#model.save_pretrained(\"lora_model\") # Local saving\n",
|
352 |
+
"#tokenizer.save_pretrained(\"lora_model\")\n",
|
353 |
+
"model.push_to_hub(\"Arun1982/LLama3-LoRA\", token = \"\"\"\") # Online saving\n",
|
354 |
+
"tokenizer.push_to_hub(\"Arun1982/LLama3-LoRA\", token = \"\"\"\") # Online saving"
|
355 |
+
],
|
356 |
+
"metadata": {
|
357 |
+
"id": "upcOlWe7A1vc"
|
358 |
+
},
|
359 |
+
"execution_count": null,
|
360 |
+
"outputs": []
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"cell_type": "markdown",
|
364 |
+
"source": [
|
365 |
+
"Now if you want to load the LoRA adapters we just saved for inference, set `False` to `True`:"
|
366 |
+
],
|
367 |
+
"metadata": {
|
368 |
+
"id": "AEEcJ4qfC7Lp"
|
369 |
+
}
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"cell_type": "code",
|
373 |
+
"source": [
|
374 |
+
"if False:\n",
|
375 |
+
" from unsloth import FastLanguageModel\n",
|
376 |
+
" model, tokenizer = FastLanguageModel.from_pretrained(\n",
|
377 |
+
" model_name = \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
|
378 |
+
" max_seq_length = max_seq_length,\n",
|
379 |
+
" dtype = dtype,\n",
|
380 |
+
" load_in_4bit = load_in_4bit,\n",
|
381 |
+
" )\n",
|
382 |
+
" FastLanguageModel.for_inference(model) # Enable native 2x faster inference\n",
|
383 |
+
"\n",
|
384 |
+
"# alpaca_prompt = You MUST copy from above!\n",
|
385 |
+
"\n",
|
386 |
+
"inputs = tokenizer(\n",
|
387 |
+
"[\n",
|
388 |
+
" alpaca_prompt.format(\n",
|
389 |
+
" \"What is a famous tall tower in Paris?\", # instruction\n",
|
390 |
+
" \"\", # input\n",
|
391 |
+
" \"\", # output - leave this blank for generation!\n",
|
392 |
+
" )\n",
|
393 |
+
"], return_tensors = \"pt\").to(\"cuda\")\n",
|
394 |
+
"\n",
|
395 |
+
"outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)\n",
|
396 |
+
"tokenizer.batch_decode(outputs)"
|
397 |
+
],
|
398 |
+
"metadata": {
|
399 |
+
"id": "MKX_XKs_BNZR"
|
400 |
+
},
|
401 |
+
"execution_count": null,
|
402 |
+
"outputs": []
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"cell_type": "markdown",
|
406 |
+
"source": [
|
407 |
+
"You can also use Hugging Face's `AutoModelForPeftCausalLM`. Only use this if you do not have `unsloth` installed. It can be hopelessly slow, since `4bit` model downloading is not supported, and Unsloth's **inference is 2x faster**."
|
408 |
+
],
|
409 |
+
"metadata": {
|
410 |
+
"id": "QQMjaNrjsU5_"
|
411 |
+
}
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"cell_type": "code",
|
415 |
+
"source": [
|
416 |
+
"if False:\n",
|
417 |
+
" # I highly do NOT suggest - use Unsloth if possible\n",
|
418 |
+
" from peft import AutoPeftModelForCausalLM\n",
|
419 |
+
" from transformers import AutoTokenizer\n",
|
420 |
+
" model = AutoPeftModelForCausalLM.from_pretrained(\n",
|
421 |
+
" \"lora_model\", # YOUR MODEL YOU USED FOR TRAINING\n",
|
422 |
+
" load_in_4bit = load_in_4bit,\n",
|
423 |
+
" )\n",
|
424 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"lora_model\")"
|
425 |
+
],
|
426 |
+
"metadata": {
|
427 |
+
"id": "yFfaXG0WsQuE"
|
428 |
+
},
|
429 |
+
"execution_count": null,
|
430 |
+
"outputs": []
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"cell_type": "markdown",
|
434 |
+
"source": [
|
435 |
+
"### Saving to float16 for VLLM\n",
|
436 |
+
"\n",
|
437 |
+
"We also support saving to `float16` directly. Select `merged_16bit` for float16 or `merged_4bit` for int4. We also allow `lora` adapters as a fallback. Use `push_to_hub_merged` to upload to your Hugging Face account! You can go to https://huggingface.co/settings/tokens for your personal tokens."
|
438 |
+
],
|
439 |
+
"metadata": {
|
440 |
+
"id": "f422JgM9sdVT"
|
441 |
+
}
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"cell_type": "code",
|
445 |
+
"source": [
|
446 |
+
"# Merge to 16bit\n",
|
447 |
+
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_16bit\",)\n",
|
448 |
+
"if True: model.push_to_hub_merged(\"Arun1982/LLama3-LoRA\", tokenizer, save_method = \"merged_16bit\", token = \"\"\"\")\n",
|
449 |
+
"\n",
|
450 |
+
"# Merge to 4bit\n",
|
451 |
+
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"merged_4bit\",)\n",
|
452 |
+
"if True: model.push_to_hub_merged(\"Arun1982/LLama3-LoRA\", tokenizer, save_method = \"merged_4bit_forced\", token = \"\"\"\")\n",
|
453 |
+
"\n",
|
454 |
+
"# Just LoRA adapters\n",
|
455 |
+
"if False: model.save_pretrained_merged(\"model\", tokenizer, save_method = \"lora\",)\n",
|
456 |
+
"if True: model.push_to_hub_merged(\"Arun1982/LLama3-LoRA\", tokenizer, save_method = \"lora\", token = \"\"\"\")"
|
457 |
+
],
|
458 |
+
"metadata": {
|
459 |
+
"id": "iHjt_SMYsd3P"
|
460 |
+
},
|
461 |
+
"execution_count": null,
|
462 |
+
"outputs": []
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"cell_type": "markdown",
|
466 |
+
"source": [
|
467 |
+
"### GGUF / llama.cpp Conversion\n",
|
468 |
+
"To save to `GGUF` / `llama.cpp`, we support it natively now! We clone `llama.cpp` and we default save it to `q8_0`. We allow all methods like `q4_k_m`. Use `save_pretrained_gguf` for local saving and `push_to_hub_gguf` for uploading to HF.\n",
|
469 |
+
"\n",
|
470 |
+
"Some supported quant methods (full list on our [Wiki page](https://github.com/unslothai/unsloth/wiki#gguf-quantization-options)):\n",
|
471 |
+
"* `q8_0` - Fast conversion. High resource use, but generally acceptable.\n",
|
472 |
+
"* `q4_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q4_K.\n",
|
473 |
+
"* `q5_k_m` - Recommended. Uses Q6_K for half of the attention.wv and feed_forward.w2 tensors, else Q5_K."
|
474 |
+
],
|
475 |
+
"metadata": {
|
476 |
+
"id": "TCv4vXHd61i7"
|
477 |
+
}
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"cell_type": "code",
|
481 |
+
"source": [
|
482 |
+
"# Save to 8bit Q8_0\n",
|
483 |
+
"if False: model.save_pretrained_gguf(\"model\", tokenizer,)\n",
|
484 |
+
"if True: model.push_to_hub_gguf(\"Arun1982/LLama3-LoRA\", tokenizer, token = \"\"\"\")\n",
|
485 |
+
"\n",
|
486 |
+
"# Save to 16bit GGUF\n",
|
487 |
+
"if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"f16\")\n",
|
488 |
+
"if True: model.push_to_hub_gguf(\"Arun1982/LLama3-LoRA\", tokenizer, quantization_method = \"f16\", token = \"\"\"\")\n",
|
489 |
+
"\n",
|
490 |
+
"# Save to q4_k_m GGUF\n",
|
491 |
+
"if False: model.save_pretrained_gguf(\"model\", tokenizer, quantization_method = \"q4_k_m\")\n",
|
492 |
+
"if True: model.push_to_hub_gguf(\"Arun1982/LLama3-LoRA\", tokenizer, quantization_method = \"q4_k_m\", token = \"\"\"\")"
|
493 |
+
],
|
494 |
+
"metadata": {
|
495 |
+
"id": "FqfebeAdT073"
|
496 |
+
},
|
497 |
+
"execution_count": null,
|
498 |
+
"outputs": []
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"cell_type": "markdown",
|
502 |
+
"source": [
|
503 |
+
"Now, use the `model-unsloth.gguf` file or `model-unsloth-Q4_K_M.gguf` file in `llama.cpp` or a UI based system like `GPT4All`. You can install GPT4All by going [here](https://gpt4all.io/index.html)."
|
504 |
+
],
|
505 |
+
"metadata": {
|
506 |
+
"id": "bDp0zNpwe6U_"
|
507 |
+
}
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"cell_type": "markdown",
|
511 |
+
"source": [
|
512 |
+
"And we're done! If you have any questions on Unsloth, we have a [Discord](https://discord.gg/u54VK8m8tk) channel! If you find any bugs or want to keep updated with the latest LLM stuff, or need help, join projects etc, feel free to join our Discord!\n",
|
513 |
+
"\n",
|
514 |
+
"Some other links:\n",
|
515 |
+
"1. Zephyr DPO 2x faster [free Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)\n",
|
516 |
+
"2. Llama 7b 2x faster [free Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)\n",
|
517 |
+
"3. TinyLlama 4x faster full Alpaca 52K in 1 hour [free Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)\n",
|
518 |
+
"4. CodeLlama 34b 2x faster [A100 on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)\n",
|
519 |
+
"5. Mistral 7b [free Kaggle version](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook)\n",
|
520 |
+
"6. We also did a [blog](https://huggingface.co/blog/unsloth-trl) with 🤗 HuggingFace, and we're in the TRL [docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth)!\n",
|
521 |
+
"7. `ChatML` for ShareGPT datasets, [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing)\n",
|
522 |
+
"8. Text completions like novel writing [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)\n",
|
523 |
+
"\n",
|
524 |
+
"<div class=\"align-center\">\n",
|
525 |
+
" <a href=\"https://github.com/unslothai/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png\" width=\"115\"></a>\n",
|
526 |
+
" <a href=\"https://discord.gg/u54VK8m8tk\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Discord.png\" width=\"145\"></a>\n",
|
527 |
+
" <a href=\"https://ko-fi.com/unsloth\"><img src=\"https://github.com/unslothai/unsloth/raw/main/images/Kofi button.png\" width=\"145\"></a></a> Support our work if you can! Thanks!\n",
|
528 |
+
"</div>"
|
529 |
+
],
|
530 |
+
"metadata": {
|
531 |
+
"id": "Zt9CHJqO6p30"
|
532 |
+
}
|
533 |
+
}
|
534 |
+
],
|
535 |
+
"metadata": {
|
536 |
+
"accelerator": "GPU",
|
537 |
+
"colab": {
|
538 |
+
"provenance": [],
|
539 |
+
"gpuType": "T4"
|
540 |
+
},
|
541 |
+
"kernelspec": {
|
542 |
+
"display_name": "Python 3",
|
543 |
+
"name": "python3"
|
544 |
+
},
|
545 |
+
"language_info": {
|
546 |
+
"name": "python"
|
547 |
+
}
|
548 |
+
},
|
549 |
+
"nbformat": 4,
|
550 |
+
"nbformat_minor": 0
|
551 |
+
}
|