--- license: mit base_model: google/vivit-b-16x2-kinetics400 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vivit-b-16x2-kinetics400-finetuned-ucf101-subset-new results: [] datasets: - sayakpaul/ucf101-subset pipeline_tag: video-classification --- # vivit-b-16x2-kinetics400-finetuned-ucf101-subset-new This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0228 - Accuracy: 0.9933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.027 | 0.25 | 300 | 0.0306 | 1.0 | | 0.0036 | 1.25 | 600 | 0.0418 | 0.9799 | | 0.019 | 2.25 | 900 | 0.0046 | 1.0 | | 0.001 | 3.25 | 1200 | 0.0228 | 0.9933 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.0.1+cu117 - Datasets 2.21.0 - Tokenizers 0.19.1