AsserMazin
commited on
Commit
•
ff90f97
1
Parent(s):
bf8502d
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 247.12 +/- 15.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f31df5479d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f31df547a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f31df547af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f31df547b80>", "_build": "<function ActorCriticPolicy._build at 0x7f31df547c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f31df547ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f31df547d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f31df547dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f31df547e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f31df547ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f31df547f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f31df548040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f31df54a900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682387218193110429, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaT1z24dv+5YeeJO+ltczaRLKm6WFihugAAgD8AAIA/mj+ava8wjT80vIG9Zs2dvmTri71aXe+7AAAAAAAAAABml6a9XOtrupYbvLpioge10y2quval1zkAAIA/AACAPzPywryuDam6R7+Nud99gbTGugi477CiOAAAgD8AAIA/mj24vWKnRj5IKPQ9gd1hvpt6iD0buhq9AAAAAAAAAABzMp+9f8yqPu5U7zv1Hmq+5R79OxcgDz0AAAAAAAAAAM0l4T3saeO5BqvmulbLV7bVcaw7RBAIOgAAAAAAAIA/7ZwLvtLYjbuyuPq6a/oVufwaCT1I1P85AACAPwAAgD9tmKU+IUgTP9wkOL5UMmW+CO5RPMBeO70AAAAAAAAAADMYHD0pACm6M2y2toPfHbKFBmk60sTVNQAAgD8AAIA/uumUPpyTHD+CoF6+oI5YvnFVBjtrPQE9AAAAAAAAAABN5w+9FGqCuqp6LLNt2PEumScrO7Yu0DMAAIA/AACAPzMOnj384ZY+cLHZvRmie77912q8d1I2vQAAAAAAAAAAmmfQvH9wlz4zM3Q6dS0svpSRb7z1yYu9AAAAAAAAAABAANG9KURFugLLqbikngK23acku746xzcAAIA/AAAAADOr073DUSO6ZPkmOQQNpzNmrIi6+4tFuAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB9Fa0ea5Y0CUhpRSlIwBbJRN6AOMAXSUR0CTQ7ywwCbMdX2UKGgGaAloD0MInZ0MjhIDZECUhpRSlGgVTegDaBZHQJNIP3VTaTR1fZQoaAZoCWgPQwhIqYQnNFhyQJSGlFKUaBVNiAFoFkdAk0pBDst03nV9lChoBmgJaA9DCJdxUwPNNm1AlIaUUpRoFU1DAWgWR0CTStkmx+rmdX2UKGgGaAloD0MIMe2b+yvibECUhpRSlGgVTUQCaBZHQJNMZ0lqrR11fZQoaAZoCWgPQwjXUGovosFsQJSGlFKUaBVNogJoFkdAk1BxhQWN3nV9lChoBmgJaA9DCDv/dtmvzXBAlIaUUpRoFU2pAWgWR0CTUV1dPci4dX2UKGgGaAloD0MIiNaKNgcdcECUhpRSlGgVTRECaBZHQJNSfUy57PZ1fZQoaAZoCWgPQwjfFcH/VrhFQJSGlFKUaBVNHwFoFkdAk1LYGyHEdnV9lChoBmgJaA9DCBSX4xWIbkBAlIaUUpRoFU08AWgWR0CTU5QFLWZrdX2UKGgGaAloD0MIl3X/WIgxcUCUhpRSlGgVTRQCaBZHQJNWd3FDOTt1fZQoaAZoCWgPQwixpx3+mtRkQJSGlFKUaBVN6ANoFkdAk1gq6nR9gHV9lChoBmgJaA9DCD4IAfkS6klAlIaUUpRoFU0jAWgWR0CTWZYLsruqdX2UKGgGaAloD0MIZVJDG4ACZECUhpRSlGgVTegDaBZHQJNmU2sJY1Z1fZQoaAZoCWgPQwj0biwoDIJlQJSGlFKUaBVN6ANoFkdAk2p+QhfShXV9lChoBmgJaA9DCIvfFFZqYXBAlIaUUpRoFU2/A2gWR0CTb7v99+gEdX2UKGgGaAloD0MI5h4SvrcycECUhpRSlGgVTeIBaBZHQJNwTQmeDnN1fZQoaAZoCWgPQwgHCVG+IH9uQJSGlFKUaBVNuAJoFkdAk3PUYbbUPXV9lChoBmgJaA9DCBuFJLN6gW5AlIaUUpRoFU28AWgWR0CTda3VTaTPdX2UKGgGaAloD0MI3c1THXKVZECUhpRSlGgVTegDaBZHQJN4pufmLcd1fZQoaAZoCWgPQwhbXOMzWTFnQJSGlFKUaBVN6ANoFkdAk3yMMZxaPnV9lChoBmgJaA9DCJ0OZD21XnFAlIaUUpRoFU2rAmgWR0CTjzLc9GI9dX2UKGgGaAloD0MItp22RoQuckCUhpRSlGgVTUsCaBZHQJORjS7Xg+B1fZQoaAZoCWgPQwjAAwMInxZnQJSGlFKUaBVN6ANoFkdAk5fgeRxLkHV9lChoBmgJaA9DCKcgPxt5UHBAlIaUUpRoFU3bA2gWR0CTmYJW/8EWdX2UKGgGaAloD0MIN/3ZjxTabECUhpRSlGgVTVIDaBZHQJOZv3mFJxx1fZQoaAZoCWgPQwgvibMiapJwQJSGlFKUaBVNHgJoFkdAk5riVbA1vXV9lChoBmgJaA9DCG5sdqR6cmVAlIaUUpRoFU3oA2gWR0CTnkJJ5E+gdX2UKGgGaAloD0MIVK2FWWiDY0CUhpRSlGgVTegDaBZHQJOgzS2H+Id1fZQoaAZoCWgPQwjXGHRCqONwQJSGlFKUaBVNHgJoFkdAk6PcGorFwXV9lChoBmgJaA9DCJMCC2DKbW1AlIaUUpRoFU3NA2gWR0CTpxPNVzZIdX2UKGgGaAloD0MIi6Td6CMZckCUhpRSlGgVTX0BaBZHQJOo6FPBSDR1fZQoaAZoCWgPQwh72Xbamp5sQJSGlFKUaBVNPgNoFkdAk7Xdn003wXV9lChoBmgJaA9DCJQWLquwk0pAlIaUUpRoFUvuaBZHQJO6KM6zVtp1fZQoaAZoCWgPQwg6XRYTG81vQJSGlFKUaBVNCAJoFkdAk70VRgqmTHV9lChoBmgJaA9DCLIrLSP1k19AlIaUUpRoFU3oA2gWR0CTvWefqX4TdX2UKGgGaAloD0MIl+Kqsq8xcECUhpRSlGgVTecCaBZHQJO/lB+nZTR1fZQoaAZoCWgPQwj2QCswpD5wQJSGlFKUaBVNIgNoFkdAk8Co7JW/8HV9lChoBmgJaA9DCLqj/+VauGRAlIaUUpRoFU3oA2gWR0CTwS8JD3M7dX2UKGgGaAloD0MIEVSNXo1cbECUhpRSlGgVTdABaBZHQJPBbP2PDHh1fZQoaAZoCWgPQwjZQSWu42xmQJSGlFKUaBVN6ANoFkdAk8SDOTq0MXV9lChoBmgJaA9DCOm4GtkV3GFAlIaUUpRoFU3oA2gWR0CTxzb/ffoBdX2UKGgGaAloD0MI3IR7ZR4JcUCUhpRSlGgVTdECaBZHQJPIAIppeu51fZQoaAZoCWgPQwgTRrOy/VVvQJSGlFKUaBVNOAFoFkdAk8hJnQID5nV9lChoBmgJaA9DCGCQ9GnVfnBAlIaUUpRoFU08AWgWR0CTy6p97WupdX2UKGgGaAloD0MI3lflQuW2cUCUhpRSlGgVTRQDaBZHQJPjIyqMm4R1fZQoaAZoCWgPQwhCrz+JzydlQJSGlFKUaBVN6ANoFkdAk+to3FUADXV9lChoBmgJaA9DCHY0DvX7dnBAlIaUUpRoFU2RAWgWR0CT7GVj7Q9idX2UKGgGaAloD0MI6kKs/ogUcUCUhpRSlGgVTWABaBZHQJPud0PpY9x1fZQoaAZoCWgPQwhjKv2Es35dQJSGlFKUaBVN6ANoFkdAk++jJQtSRHV9lChoBmgJaA9DCJs5JLXQGXJAlIaUUpRoFU3tAWgWR0CT8yzguRLcdX2UKGgGaAloD0MIMBLacu4bcECUhpRSlGgVTYUBaBZHQJPz0XpGFzx1fZQoaAZoCWgPQwjRd7eyxC5xQJSGlFKUaBVNGAJoFkdAk/Qb6Hj6vnV9lChoBmgJaA9DCPJ376ixaGxAlIaUUpRoFU2GAWgWR0CT9PMGX5WSdX2UKGgGaAloD0MIVtXL7zRWX0CUhpRSlGgVTegDaBZHQJP306DGtIV1fZQoaAZoCWgPQwhWgVoMHn5wQJSGlFKUaBVNiAJoFkdAk/gAxrSE13V9lChoBmgJaA9DCFuzlZf8VGxAlIaUUpRoFU3IA2gWR0CT+HJZW7vodX2UKGgGaAloD0MIzEI7p9kbcUCUhpRSlGgVTRwCaBZHQJQAOfbsWwh1fZQoaAZoCWgPQwhj1SDM7ZdrQJSGlFKUaBVNkwFoFkdAlAS3eN1hcHV9lChoBmgJaA9DCOG4jJsaOEBAlIaUUpRoFUv2aBZHQJQGHYVZcLV1fZQoaAZoCWgPQwhxr8xbNV1wQJSGlFKUaBVN2QFoFkdAlAbrq6e5F3V9lChoBmgJaA9DCE31ZP7RKHFAlIaUUpRoFU2mA2gWR0CUB5oTwlSkdX2UKGgGaAloD0MIKsql8YuVcECUhpRSlGgVTZQBaBZHQJQLSyon8bd1fZQoaAZoCWgPQwgDe0yk9BdwQJSGlFKUaBVNrgFoFkdAlAuBsANoanV9lChoBmgJaA9DCNxoAG+B2G9AlIaUUpRoFU0TAmgWR0CUDVbM5fdAdX2UKGgGaAloD0MIkN0FSgpIX0CUhpRSlGgVTegDaBZHQJQPRiz9jwx1fZQoaAZoCWgPQwi2R2+4j1ZwQJSGlFKUaBVNCgNoFkdAlBKaLGaQWHV9lChoBmgJaA9DCLvTnSceE29AlIaUUpRoFU1nAmgWR0CUFL4VRDTjdX2UKGgGaAloD0MIjdR7KqdibECUhpRSlGgVTV4CaBZHQJQVInWrfch1fZQoaAZoCWgPQwjNyvYhb5hjQJSGlFKUaBVN6ANoFkdAlBXcT37DVHV9lChoBmgJaA9DCKrx0k1ianFAlIaUUpRoFU2KAWgWR0CUFkpnpSrHdX2UKGgGaAloD0MIuJIdG4HYMsCUhpRSlGgVS99oFkdAlBdYPK+zt3V9lChoBmgJaA9DCOAqTyBscXJAlIaUUpRoFU1HAmgWR0CUF9sAvL5idX2UKGgGaAloD0MI8PyiBP0vbECUhpRSlGgVTWMBaBZHQJQacoMKCxx1fZQoaAZoCWgPQwjAWUqWk8tsQJSGlFKUaBVNWAFoFkdAlDGvl2eQMnV9lChoBmgJaA9DCGtj7IRXJXBAlIaUUpRoFU3BAWgWR0CUMmvVmSQpdX2UKGgGaAloD0MI2e4eoHvLbkCUhpRSlGgVTZoDaBZHQJQzY+MZP2x1fZQoaAZoCWgPQwg+tI8VvIxxQJSGlFKUaBVNQAFoFkdAlDPLpFCswXV9lChoBmgJaA9DCLbXgt5bKXBAlIaUUpRoFU0cA2gWR0CUNnHwgDA8dX2UKGgGaAloD0MIilkvhnLRbECUhpRSlGgVTc0BaBZHQJQ4aEK3NLV1fZQoaAZoCWgPQwinrnyWp/pwQJSGlFKUaBVNMgFoFkdAlDjEHhS9/XV9lChoBmgJaA9DCDnQQ22br25AlIaUUpRoFU2GAWgWR0CUO8U7CBPLdX2UKGgGaAloD0MI6dFUT+Z3KsCUhpRSlGgVTQ8BaBZHQJQ9j+uNgjR1fZQoaAZoCWgPQwh+cD51rGI1QJSGlFKUaBVL9mgWR0CUPjy+HrQgdX2UKGgGaAloD0MIz6Chf8IfcUCUhpRSlGgVTd8BaBZHQJQ/dMQEpy91fZQoaAZoCWgPQwj67laW6EZEQJSGlFKUaBVNAAFoFkdAlESpNwiqyXV9lChoBmgJaA9DCIoAp3cxEXFAlIaUUpRoFU0fAWgWR0CURdVYISlFdX2UKGgGaAloD0MIcCTQYNNab0CUhpRSlGgVTVkCaBZHQJRIo4R28qZ1fZQoaAZoCWgPQwjWOJuOAAVvQJSGlFKUaBVNkwFoFkdAlEm5RoAXEnV9lChoBmgJaA9DCJF9kGXBjkNAlIaUUpRoFUv5aBZHQJRK9LeyiVV1fZQoaAZoCWgPQwhBR6taUvFmQJSGlFKUaBVN6ANoFkdAlEtxR/EwWXV9lChoBmgJaA9DCDeN7bWghGNAlIaUUpRoFU3oA2gWR0CUTbe/5+H8dX2UKGgGaAloD0MIxHqjVhjrbUCUhpRSlGgVTc0BaBZHQJRTgeuFHrh1fZQoaAZoCWgPQwjkolpElC5wQJSGlFKUaBVNWwFoFkdAlFiLLEDQq3V9lChoBmgJaA9DCPmf/N0732NAlIaUUpRoFU3oA2gWR0CUWstL+PzWdX2UKGgGaAloD0MI9dVVgVpkcUCUhpRSlGgVTZUDaBZHQJRbRr6+FlF1fZQoaAZoCWgPQwimKQKcXrlxQJSGlFKUaBVNsgNoFkdAlFwuVopQUHV9lChoBmgJaA9DCBx5ILJIAW5AlIaUUpRoFU1fAWgWR0CUXmRekYXPdX2UKGgGaAloD0MI2Ls/3isscUCUhpRSlGgVTUQBaBZHQJRfXlIVdop1fZQoaAZoCWgPQwhpN/qYj4JhQJSGlFKUaBVN6ANoFkdAlGRmcBltj3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b74ef5e3f7d47e372ca431c5a7d925caff50823daf2344bbe46f79ca605d8a4
|
3 |
+
size 147391
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f31df5479d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f31df547a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f31df547af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f31df547b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f31df547c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f31df547ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f31df547d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f31df547dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f31df547e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f31df547ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f31df547f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f31df548040>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f31df54a900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682387218193110429,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaT1z24dv+5YeeJO+ltczaRLKm6WFihugAAgD8AAIA/mj+ava8wjT80vIG9Zs2dvmTri71aXe+7AAAAAAAAAABml6a9XOtrupYbvLpioge10y2quval1zkAAIA/AACAPzPywryuDam6R7+Nud99gbTGugi477CiOAAAgD8AAIA/mj24vWKnRj5IKPQ9gd1hvpt6iD0buhq9AAAAAAAAAABzMp+9f8yqPu5U7zv1Hmq+5R79OxcgDz0AAAAAAAAAAM0l4T3saeO5BqvmulbLV7bVcaw7RBAIOgAAAAAAAIA/7ZwLvtLYjbuyuPq6a/oVufwaCT1I1P85AACAPwAAgD9tmKU+IUgTP9wkOL5UMmW+CO5RPMBeO70AAAAAAAAAADMYHD0pACm6M2y2toPfHbKFBmk60sTVNQAAgD8AAIA/uumUPpyTHD+CoF6+oI5YvnFVBjtrPQE9AAAAAAAAAABN5w+9FGqCuqp6LLNt2PEumScrO7Yu0DMAAIA/AACAPzMOnj384ZY+cLHZvRmie77912q8d1I2vQAAAAAAAAAAmmfQvH9wlz4zM3Q6dS0svpSRb7z1yYu9AAAAAAAAAABAANG9KURFugLLqbikngK23acku746xzcAAIA/AAAAADOr073DUSO6ZPkmOQQNpzNmrIi6+4tFuAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB9Fa0ea5Y0CUhpRSlIwBbJRN6AOMAXSUR0CTQ7ywwCbMdX2UKGgGaAloD0MInZ0MjhIDZECUhpRSlGgVTegDaBZHQJNIP3VTaTR1fZQoaAZoCWgPQwhIqYQnNFhyQJSGlFKUaBVNiAFoFkdAk0pBDst03nV9lChoBmgJaA9DCJdxUwPNNm1AlIaUUpRoFU1DAWgWR0CTStkmx+rmdX2UKGgGaAloD0MIMe2b+yvibECUhpRSlGgVTUQCaBZHQJNMZ0lqrR11fZQoaAZoCWgPQwjXUGovosFsQJSGlFKUaBVNogJoFkdAk1BxhQWN3nV9lChoBmgJaA9DCDv/dtmvzXBAlIaUUpRoFU2pAWgWR0CTUV1dPci4dX2UKGgGaAloD0MIiNaKNgcdcECUhpRSlGgVTRECaBZHQJNSfUy57PZ1fZQoaAZoCWgPQwjfFcH/VrhFQJSGlFKUaBVNHwFoFkdAk1LYGyHEdnV9lChoBmgJaA9DCBSX4xWIbkBAlIaUUpRoFU08AWgWR0CTU5QFLWZrdX2UKGgGaAloD0MIl3X/WIgxcUCUhpRSlGgVTRQCaBZHQJNWd3FDOTt1fZQoaAZoCWgPQwixpx3+mtRkQJSGlFKUaBVN6ANoFkdAk1gq6nR9gHV9lChoBmgJaA9DCD4IAfkS6klAlIaUUpRoFU0jAWgWR0CTWZYLsruqdX2UKGgGaAloD0MIZVJDG4ACZECUhpRSlGgVTegDaBZHQJNmU2sJY1Z1fZQoaAZoCWgPQwj0biwoDIJlQJSGlFKUaBVN6ANoFkdAk2p+QhfShXV9lChoBmgJaA9DCIvfFFZqYXBAlIaUUpRoFU2/A2gWR0CTb7v99+gEdX2UKGgGaAloD0MI5h4SvrcycECUhpRSlGgVTeIBaBZHQJNwTQmeDnN1fZQoaAZoCWgPQwgHCVG+IH9uQJSGlFKUaBVNuAJoFkdAk3PUYbbUPXV9lChoBmgJaA9DCBuFJLN6gW5AlIaUUpRoFU28AWgWR0CTda3VTaTPdX2UKGgGaAloD0MI3c1THXKVZECUhpRSlGgVTegDaBZHQJN4pufmLcd1fZQoaAZoCWgPQwhbXOMzWTFnQJSGlFKUaBVN6ANoFkdAk3yMMZxaPnV9lChoBmgJaA9DCJ0OZD21XnFAlIaUUpRoFU2rAmgWR0CTjzLc9GI9dX2UKGgGaAloD0MItp22RoQuckCUhpRSlGgVTUsCaBZHQJORjS7Xg+B1fZQoaAZoCWgPQwjAAwMInxZnQJSGlFKUaBVN6ANoFkdAk5fgeRxLkHV9lChoBmgJaA9DCKcgPxt5UHBAlIaUUpRoFU3bA2gWR0CTmYJW/8EWdX2UKGgGaAloD0MIN/3ZjxTabECUhpRSlGgVTVIDaBZHQJOZv3mFJxx1fZQoaAZoCWgPQwgvibMiapJwQJSGlFKUaBVNHgJoFkdAk5riVbA1vXV9lChoBmgJaA9DCG5sdqR6cmVAlIaUUpRoFU3oA2gWR0CTnkJJ5E+gdX2UKGgGaAloD0MIVK2FWWiDY0CUhpRSlGgVTegDaBZHQJOgzS2H+Id1fZQoaAZoCWgPQwjXGHRCqONwQJSGlFKUaBVNHgJoFkdAk6PcGorFwXV9lChoBmgJaA9DCJMCC2DKbW1AlIaUUpRoFU3NA2gWR0CTpxPNVzZIdX2UKGgGaAloD0MIi6Td6CMZckCUhpRSlGgVTX0BaBZHQJOo6FPBSDR1fZQoaAZoCWgPQwh72Xbamp5sQJSGlFKUaBVNPgNoFkdAk7Xdn003wXV9lChoBmgJaA9DCJQWLquwk0pAlIaUUpRoFUvuaBZHQJO6KM6zVtp1fZQoaAZoCWgPQwg6XRYTG81vQJSGlFKUaBVNCAJoFkdAk70VRgqmTHV9lChoBmgJaA9DCLIrLSP1k19AlIaUUpRoFU3oA2gWR0CTvWefqX4TdX2UKGgGaAloD0MIl+Kqsq8xcECUhpRSlGgVTecCaBZHQJO/lB+nZTR1fZQoaAZoCWgPQwj2QCswpD5wQJSGlFKUaBVNIgNoFkdAk8Co7JW/8HV9lChoBmgJaA9DCLqj/+VauGRAlIaUUpRoFU3oA2gWR0CTwS8JD3M7dX2UKGgGaAloD0MIEVSNXo1cbECUhpRSlGgVTdABaBZHQJPBbP2PDHh1fZQoaAZoCWgPQwjZQSWu42xmQJSGlFKUaBVN6ANoFkdAk8SDOTq0MXV9lChoBmgJaA9DCOm4GtkV3GFAlIaUUpRoFU3oA2gWR0CTxzb/ffoBdX2UKGgGaAloD0MI3IR7ZR4JcUCUhpRSlGgVTdECaBZHQJPIAIppeu51fZQoaAZoCWgPQwgTRrOy/VVvQJSGlFKUaBVNOAFoFkdAk8hJnQID5nV9lChoBmgJaA9DCGCQ9GnVfnBAlIaUUpRoFU08AWgWR0CTy6p97WupdX2UKGgGaAloD0MI3lflQuW2cUCUhpRSlGgVTRQDaBZHQJPjIyqMm4R1fZQoaAZoCWgPQwhCrz+JzydlQJSGlFKUaBVN6ANoFkdAk+to3FUADXV9lChoBmgJaA9DCHY0DvX7dnBAlIaUUpRoFU2RAWgWR0CT7GVj7Q9idX2UKGgGaAloD0MI6kKs/ogUcUCUhpRSlGgVTWABaBZHQJPud0PpY9x1fZQoaAZoCWgPQwhjKv2Es35dQJSGlFKUaBVN6ANoFkdAk++jJQtSRHV9lChoBmgJaA9DCJs5JLXQGXJAlIaUUpRoFU3tAWgWR0CT8yzguRLcdX2UKGgGaAloD0MIMBLacu4bcECUhpRSlGgVTYUBaBZHQJPz0XpGFzx1fZQoaAZoCWgPQwjRd7eyxC5xQJSGlFKUaBVNGAJoFkdAk/Qb6Hj6vnV9lChoBmgJaA9DCPJ376ixaGxAlIaUUpRoFU2GAWgWR0CT9PMGX5WSdX2UKGgGaAloD0MIVtXL7zRWX0CUhpRSlGgVTegDaBZHQJP306DGtIV1fZQoaAZoCWgPQwhWgVoMHn5wQJSGlFKUaBVNiAJoFkdAk/gAxrSE13V9lChoBmgJaA9DCFuzlZf8VGxAlIaUUpRoFU3IA2gWR0CT+HJZW7vodX2UKGgGaAloD0MIzEI7p9kbcUCUhpRSlGgVTRwCaBZHQJQAOfbsWwh1fZQoaAZoCWgPQwhj1SDM7ZdrQJSGlFKUaBVNkwFoFkdAlAS3eN1hcHV9lChoBmgJaA9DCOG4jJsaOEBAlIaUUpRoFUv2aBZHQJQGHYVZcLV1fZQoaAZoCWgPQwhxr8xbNV1wQJSGlFKUaBVN2QFoFkdAlAbrq6e5F3V9lChoBmgJaA9DCE31ZP7RKHFAlIaUUpRoFU2mA2gWR0CUB5oTwlSkdX2UKGgGaAloD0MIKsql8YuVcECUhpRSlGgVTZQBaBZHQJQLSyon8bd1fZQoaAZoCWgPQwgDe0yk9BdwQJSGlFKUaBVNrgFoFkdAlAuBsANoanV9lChoBmgJaA9DCNxoAG+B2G9AlIaUUpRoFU0TAmgWR0CUDVbM5fdAdX2UKGgGaAloD0MIkN0FSgpIX0CUhpRSlGgVTegDaBZHQJQPRiz9jwx1fZQoaAZoCWgPQwi2R2+4j1ZwQJSGlFKUaBVNCgNoFkdAlBKaLGaQWHV9lChoBmgJaA9DCLvTnSceE29AlIaUUpRoFU1nAmgWR0CUFL4VRDTjdX2UKGgGaAloD0MIjdR7KqdibECUhpRSlGgVTV4CaBZHQJQVInWrfch1fZQoaAZoCWgPQwjNyvYhb5hjQJSGlFKUaBVN6ANoFkdAlBXcT37DVHV9lChoBmgJaA9DCKrx0k1ianFAlIaUUpRoFU2KAWgWR0CUFkpnpSrHdX2UKGgGaAloD0MIuJIdG4HYMsCUhpRSlGgVS99oFkdAlBdYPK+zt3V9lChoBmgJaA9DCOAqTyBscXJAlIaUUpRoFU1HAmgWR0CUF9sAvL5idX2UKGgGaAloD0MI8PyiBP0vbECUhpRSlGgVTWMBaBZHQJQacoMKCxx1fZQoaAZoCWgPQwjAWUqWk8tsQJSGlFKUaBVNWAFoFkdAlDGvl2eQMnV9lChoBmgJaA9DCGtj7IRXJXBAlIaUUpRoFU3BAWgWR0CUMmvVmSQpdX2UKGgGaAloD0MI2e4eoHvLbkCUhpRSlGgVTZoDaBZHQJQzY+MZP2x1fZQoaAZoCWgPQwg+tI8VvIxxQJSGlFKUaBVNQAFoFkdAlDPLpFCswXV9lChoBmgJaA9DCLbXgt5bKXBAlIaUUpRoFU0cA2gWR0CUNnHwgDA8dX2UKGgGaAloD0MIilkvhnLRbECUhpRSlGgVTc0BaBZHQJQ4aEK3NLV1fZQoaAZoCWgPQwinrnyWp/pwQJSGlFKUaBVNMgFoFkdAlDjEHhS9/XV9lChoBmgJaA9DCDnQQ22br25AlIaUUpRoFU2GAWgWR0CUO8U7CBPLdX2UKGgGaAloD0MI6dFUT+Z3KsCUhpRSlGgVTQ8BaBZHQJQ9j+uNgjR1fZQoaAZoCWgPQwh+cD51rGI1QJSGlFKUaBVL9mgWR0CUPjy+HrQgdX2UKGgGaAloD0MIz6Chf8IfcUCUhpRSlGgVTd8BaBZHQJQ/dMQEpy91fZQoaAZoCWgPQwj67laW6EZEQJSGlFKUaBVNAAFoFkdAlESpNwiqyXV9lChoBmgJaA9DCIoAp3cxEXFAlIaUUpRoFU0fAWgWR0CURdVYISlFdX2UKGgGaAloD0MIcCTQYNNab0CUhpRSlGgVTVkCaBZHQJRIo4R28qZ1fZQoaAZoCWgPQwjWOJuOAAVvQJSGlFKUaBVNkwFoFkdAlEm5RoAXEnV9lChoBmgJaA9DCJF9kGXBjkNAlIaUUpRoFUv5aBZHQJRK9LeyiVV1fZQoaAZoCWgPQwhBR6taUvFmQJSGlFKUaBVN6ANoFkdAlEtxR/EwWXV9lChoBmgJaA9DCDeN7bWghGNAlIaUUpRoFU3oA2gWR0CUTbe/5+H8dX2UKGgGaAloD0MIxHqjVhjrbUCUhpRSlGgVTc0BaBZHQJRTgeuFHrh1fZQoaAZoCWgPQwjkolpElC5wQJSGlFKUaBVNWwFoFkdAlFiLLEDQq3V9lChoBmgJaA9DCPmf/N0732NAlIaUUpRoFU3oA2gWR0CUWstL+PzWdX2UKGgGaAloD0MI9dVVgVpkcUCUhpRSlGgVTZUDaBZHQJRbRr6+FlF1fZQoaAZoCWgPQwimKQKcXrlxQJSGlFKUaBVNsgNoFkdAlFwuVopQUHV9lChoBmgJaA9DCBx5ILJIAW5AlIaUUpRoFU1fAWgWR0CUXmRekYXPdX2UKGgGaAloD0MI2Ls/3isscUCUhpRSlGgVTUQBaBZHQJRfXlIVdop1fZQoaAZoCWgPQwhpN/qYj4JhQJSGlFKUaBVN6ANoFkdAlGRmcBltj3VlLg=="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 248,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9a3c3352906bae0c32cc661a53035f3c381433be0f7184fd9cd6801c0ed5756
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd8fd65364ad0479280bf8e17d9e03435b2a86a7fececed31eeae2bf0bedffdf
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (244 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 247.12139643190707, "std_reward": 15.104957661486235, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-25T02:09:00.539822"}
|