Updated version of the your-model-name model and tokenizer.
Browse files- main.py +36 -37
- preprocess.py +0 -166
- pytorch_model.bin +1 -1
main.py
CHANGED
@@ -6,56 +6,55 @@ import torch
|
|
6 |
import subprocess
|
7 |
|
8 |
data = Model()
|
9 |
-
data.
|
10 |
-
|
11 |
-
|
12 |
-
# print(train_answers)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
|
25 |
|
26 |
|
27 |
-
|
28 |
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
|
|
|
6 |
import subprocess
|
7 |
|
8 |
data = Model()
|
9 |
+
train_contexts, train_questions, train_answers = data.ArrangeData("livecheckcontainer")
|
10 |
+
val_contexts, val_questions, val_answers = data.ArrangeData("livecheckcontainer")
|
11 |
+
print(train_answers)
|
|
|
12 |
|
13 |
+
train_answers, train_contexts = data.add_end_idx(train_answers, train_contexts)
|
14 |
+
val_answers, val_contexts = data.add_end_idx(val_answers, val_contexts)
|
15 |
|
16 |
+
train_encodings, val_encodings = data.Tokenizer(train_contexts, train_questions, val_contexts, val_questions)
|
17 |
|
18 |
+
train_encodings = data.add_token_positions(train_encodings, train_answers)
|
19 |
+
val_encodings = data.add_token_positions(val_encodings, val_answers)
|
20 |
|
21 |
+
train_dataset = SquadDataset(train_encodings)
|
22 |
+
val_dataset = SquadDataset(val_encodings)
|
23 |
|
24 |
|
25 |
|
26 |
+
model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
|
27 |
|
28 |
|
29 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
30 |
|
31 |
+
model.to(device)
|
32 |
+
model.train()
|
33 |
|
34 |
+
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
|
35 |
|
36 |
+
optim = AdamW(model.parameters(), lr=5e-5)
|
37 |
|
38 |
+
for epoch in range(2):
|
39 |
+
print(epoch)
|
40 |
+
for batch in train_loader:
|
41 |
+
optim.zero_grad()
|
42 |
+
input_ids = batch['input_ids'].to(device)
|
43 |
+
attention_mask = batch['attention_mask'].to(device)
|
44 |
+
start_positions = batch['start_positions'].to(device)
|
45 |
+
end_positions = batch['end_positions'].to(device)
|
46 |
+
outputs = model(input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions)
|
47 |
+
loss = outputs[0]
|
48 |
+
loss.backward()
|
49 |
+
optim.step()
|
50 |
+
print("Done")
|
51 |
+
model.eval()
|
52 |
+
model.save_pretrained("./")
|
53 |
+
data.tokenizer.save_pretrained("./")
|
54 |
|
55 |
|
56 |
+
subprocess.call(["git", "add","--all"])
|
57 |
+
subprocess.call(["git", "status"])
|
58 |
+
subprocess.call(["git", "commit", "-m", "First version of the your-model-name model and tokenizer."])
|
59 |
+
subprocess.call(["git", "push"])
|
60 |
|
preprocess.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
from os import close
|
3 |
-
from pathlib import Path
|
4 |
-
from azure.cosmos import CosmosClient, PartitionKey, exceptions
|
5 |
-
from transformers import DistilBertTokenizerFast
|
6 |
-
import torch
|
7 |
-
from transformers import DistilBertForQuestionAnswering, AdamW
|
8 |
-
from torch.utils.data import DataLoader
|
9 |
-
import subprocess
|
10 |
-
|
11 |
-
class Model:
|
12 |
-
|
13 |
-
def __init__(self) -> None:
|
14 |
-
self.endPoint = "https://productdevelopmentstorage.documents.azure.com:443/"
|
15 |
-
self.primaryKey = "nVds9dPOkPuKu8RyWqigA1DIah4SVZtl1DIM0zDuRKd95an04QC0qv9TQIgrdtgluZo7Z0HXACFQgKgOQEAx1g=="
|
16 |
-
self.client = CosmosClient(self.endPoint, self.primaryKey)
|
17 |
-
self.tokenizer = None
|
18 |
-
|
19 |
-
def GetData(self, type):
|
20 |
-
database = self.client.get_database_client("squadstorage")
|
21 |
-
container = database.get_container_client(type)
|
22 |
-
item_list = list(container.read_all_items(max_item_count=10))
|
23 |
-
return item_list
|
24 |
-
|
25 |
-
def ArrangeData(self, type):
|
26 |
-
squad_dict = self.GetData(type)
|
27 |
-
|
28 |
-
contexts = []
|
29 |
-
questions = []
|
30 |
-
answers = []
|
31 |
-
|
32 |
-
for i in squad_dict:
|
33 |
-
contexts.append(i["context"])
|
34 |
-
questions.append(i["question"])
|
35 |
-
answers.append(i["answers"])
|
36 |
-
|
37 |
-
return contexts, questions, answers
|
38 |
-
|
39 |
-
def add_end_idx(self, answers, contexts):
|
40 |
-
for answer, context in zip(answers, contexts):
|
41 |
-
gold_text = answer['text'][0]
|
42 |
-
start_idx = answer['answer_start'][0]
|
43 |
-
end_idx = start_idx + len(gold_text)
|
44 |
-
|
45 |
-
if context[start_idx:end_idx] == gold_text:
|
46 |
-
answer['answer_end'] = end_idx
|
47 |
-
elif context[start_idx-1:end_idx-1] == gold_text:
|
48 |
-
answer['answer_start'] = start_idx - 1
|
49 |
-
answer['answer_end'] = end_idx - 1 # When the gold label is off by one character
|
50 |
-
elif context[start_idx-2:end_idx-2] == gold_text:
|
51 |
-
answer['answer_start'] = start_idx - 2
|
52 |
-
answer['answer_end'] = end_idx - 2 # When the gold label is off by two characters
|
53 |
-
|
54 |
-
return answers, contexts
|
55 |
-
|
56 |
-
def Tokenizer(self, train_contexts, train_questions, val_contexts, val_questions):
|
57 |
-
self.tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')
|
58 |
-
|
59 |
-
train_encodings = self.tokenizer(train_contexts, train_questions, truncation=True, padding=True)
|
60 |
-
val_encodings = self.tokenizer(val_contexts, val_questions, truncation=True, padding=True)
|
61 |
-
|
62 |
-
return train_encodings, val_encodings
|
63 |
-
|
64 |
-
|
65 |
-
def add_token_positions(self, encodings, answers):
|
66 |
-
start_positions = []
|
67 |
-
end_positions = []
|
68 |
-
for i in range(len(answers)):
|
69 |
-
start_positions.append(encodings.char_to_token(i, answers[i]['answer_start'][0]))
|
70 |
-
end_positions.append(encodings.char_to_token(i, answers[i]['answer_end'] - 1))
|
71 |
-
|
72 |
-
# if start position is None, the answer passage has been truncated
|
73 |
-
|
74 |
-
if start_positions[-1] is None:
|
75 |
-
start_positions[-1] = self.tokenizer.model_max_length
|
76 |
-
if end_positions[-1] is None:
|
77 |
-
end_positions[-1] = self.tokenizer.model_max_length
|
78 |
-
|
79 |
-
encodings.update({'start_positions': start_positions, 'end_positions': end_positions})
|
80 |
-
return encodings
|
81 |
-
|
82 |
-
# train_contexts, train_questions, train_answers = read_squad('squad/train-v2.0.json')
|
83 |
-
# val_contexts, val_questions, val_answers = read_squad('squad/dev-v2.0.json')
|
84 |
-
|
85 |
-
def ModelExecution(self):
|
86 |
-
train_contexts, train_questions, train_answers = self.ArrangeData("livecheckcontainer")
|
87 |
-
val_contexts, val_questions, val_answers = self.ArrangeData("livecheckcontainer")
|
88 |
-
print(train_answers)
|
89 |
-
|
90 |
-
train_answers, train_contexts = self.add_end_idx(train_answers, train_contexts)
|
91 |
-
val_answers, val_contexts = self.add_end_idx(val_answers, val_contexts)
|
92 |
-
|
93 |
-
train_encodings, val_encodings = self.Tokenizer(train_contexts, train_questions, val_contexts, val_questions)
|
94 |
-
|
95 |
-
train_encodings = self.add_token_positions(train_encodings, train_answers)
|
96 |
-
val_encodings = self.add_token_positions(val_encodings, val_answers)
|
97 |
-
|
98 |
-
train_dataset = SquadDataset(train_encodings)
|
99 |
-
val_dataset = SquadDataset(val_encodings)
|
100 |
-
|
101 |
-
model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased")
|
102 |
-
|
103 |
-
|
104 |
-
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
105 |
-
|
106 |
-
model.to(device)
|
107 |
-
model.train()
|
108 |
-
|
109 |
-
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
|
110 |
-
|
111 |
-
optim = AdamW(model.parameters(), lr=5e-5)
|
112 |
-
|
113 |
-
for epoch in range(2):
|
114 |
-
print(epoch)
|
115 |
-
for batch in train_loader:
|
116 |
-
optim.zero_grad()
|
117 |
-
input_ids = batch['input_ids'].to(device)
|
118 |
-
attention_mask = batch['attention_mask'].to(device)
|
119 |
-
start_positions = batch['start_positions'].to(device)
|
120 |
-
end_positions = batch['end_positions'].to(device)
|
121 |
-
outputs = model(input_ids, attention_mask=attention_mask, start_positions=start_positions, end_positions=end_positions)
|
122 |
-
loss = outputs[0]
|
123 |
-
loss.backward()
|
124 |
-
optim.step()
|
125 |
-
print("Done")
|
126 |
-
model.eval()
|
127 |
-
model.save_pretrained("./")
|
128 |
-
self.tokenizer.save_pretrained("./")
|
129 |
-
|
130 |
-
subprocess.call(["git", "add","--all"])
|
131 |
-
subprocess.call(["git", "status"])
|
132 |
-
subprocess.call(["git", "commit", "-m", "First version of the your-model-name model and tokenizer."])
|
133 |
-
subprocess.call(["git", "push"])
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
class SquadDataset(torch.utils.data.Dataset):
|
139 |
-
def __init__(self, encodings):
|
140 |
-
self.encodings = encodings
|
141 |
-
|
142 |
-
def __getitem__(self, idx):
|
143 |
-
return {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
144 |
-
|
145 |
-
def __len__(self):
|
146 |
-
return len(self.encodings.input_ids)
|
147 |
-
|
148 |
-
# import requests
|
149 |
-
# API_URL = "https://api-inference.huggingface.co/models/Ateeb/QA"
|
150 |
-
# headers = {"Authorization": "Bearer api_DHnvjPKdjmjkmEYQubgvmIKJqWaNNYljaF"}
|
151 |
-
|
152 |
-
# def query(payload):
|
153 |
-
# data = json.dumps(payload)
|
154 |
-
# response = requests.request("POST", API_URL, headers=headers, data=data)
|
155 |
-
# return json.loads(response.content.decode("utf-8"))
|
156 |
-
|
157 |
-
|
158 |
-
# data = query(
|
159 |
-
# {
|
160 |
-
# "inputs": {
|
161 |
-
# "question": "What is my name?",
|
162 |
-
# "context": "My name is Clara and I live in Berkeley.",
|
163 |
-
# }
|
164 |
-
# }
|
165 |
-
# )
|
166 |
-
# print(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 265498527
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8cccd7fb599db7567c7ad9506415596698f1de0cdda9f473af71a8edd791450
|
3 |
size 265498527
|