File size: 4,378 Bytes
9d26d70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
library_name: transformers
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-Ocular-Toxoplasmosis-DA
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8548387096774194
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-tiny-patch4-window8-256-Ocular-Toxoplasmosis-DA
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5075
- Accuracy: 0.8548
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.3402 | 0.9630 | 13 | 1.1682 | 0.5484 |
| 1.1725 | 2.0 | 27 | 1.0025 | 0.6290 |
| 0.8824 | 2.9630 | 40 | 0.7644 | 0.6613 |
| 0.7342 | 4.0 | 54 | 0.5840 | 0.7258 |
| 0.6734 | 4.9630 | 67 | 0.6754 | 0.6452 |
| 0.5167 | 6.0 | 81 | 0.5904 | 0.6935 |
| 0.5009 | 6.9630 | 94 | 0.5549 | 0.6935 |
| 0.4988 | 8.0 | 108 | 0.6204 | 0.6774 |
| 0.3856 | 8.9630 | 121 | 0.4463 | 0.8226 |
| 0.4057 | 10.0 | 135 | 0.5232 | 0.7903 |
| 0.3929 | 10.9630 | 148 | 0.4580 | 0.8387 |
| 0.3638 | 12.0 | 162 | 0.5115 | 0.7742 |
| 0.3248 | 12.9630 | 175 | 0.5313 | 0.7742 |
| 0.2673 | 14.0 | 189 | 0.5203 | 0.7903 |
| 0.2922 | 14.9630 | 202 | 0.4315 | 0.8387 |
| 0.2803 | 16.0 | 216 | 0.4577 | 0.8387 |
| 0.2735 | 16.9630 | 229 | 0.5467 | 0.8065 |
| 0.2586 | 18.0 | 243 | 0.5236 | 0.8387 |
| 0.2366 | 18.9630 | 256 | 0.5075 | 0.8548 |
| 0.2347 | 20.0 | 270 | 0.5179 | 0.8387 |
| 0.2046 | 20.9630 | 283 | 0.5428 | 0.8387 |
| 0.2289 | 22.0 | 297 | 0.5748 | 0.8387 |
| 0.2195 | 22.9630 | 310 | 0.5969 | 0.8226 |
| 0.2224 | 24.0 | 324 | 0.6092 | 0.8226 |
| 0.2167 | 24.9630 | 337 | 0.6333 | 0.8226 |
| 0.1956 | 26.0 | 351 | 0.5993 | 0.8226 |
| 0.2174 | 26.9630 | 364 | 0.6063 | 0.8548 |
| 0.1999 | 28.0 | 378 | 0.6414 | 0.8387 |
| 0.1667 | 28.9630 | 391 | 0.6297 | 0.8387 |
| 0.1835 | 30.0 | 405 | 0.6149 | 0.8226 |
| 0.186 | 30.9630 | 418 | 0.6430 | 0.8387 |
| 0.1749 | 32.0 | 432 | 0.6678 | 0.8387 |
| 0.1663 | 32.9630 | 445 | 0.6829 | 0.8387 |
| 0.1557 | 34.0 | 459 | 0.6557 | 0.8387 |
| 0.1913 | 34.9630 | 472 | 0.6275 | 0.8387 |
| 0.1775 | 36.0 | 486 | 0.6555 | 0.8548 |
| 0.152 | 36.9630 | 499 | 0.6653 | 0.8548 |
| 0.1897 | 38.0 | 513 | 0.6682 | 0.8548 |
| 0.1589 | 38.5185 | 520 | 0.6679 | 0.8548 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|