--- license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-ve-Ub results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.09803921568627451 --- # swinv2-tiny-patch4-window8-256-ve-Ub This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 53618207116050790111890112512.0000 - Accuracy: 0.0980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:----------------------------------:|:-----:|:----:|:----------------------------------:|:--------:| | No log | 0.57 | 1 | 53618207116050790111890112512.0000 | 0.0980 | | No log | 1.71 | 3 | 53618207116050790111890112512.0000 | 0.0980 | | No log | 2.86 | 5 | 53618207116050790111890112512.0000 | 0.0980 | | No log | 4.0 | 7 | 53618207116050790111890112512.0000 | 0.0980 | | No log | 4.57 | 8 | 53618207116050790111890112512.0000 | 0.0980 | | 52775460204830951003775827968.0000 | 5.71 | 10 | 53618207116050790111890112512.0000 | 0.0980 | | 52775460204830951003775827968.0000 | 6.86 | 12 | 53618207116050790111890112512.0000 | 0.0980 | | 52775460204830951003775827968.0000 | 8.0 | 14 | 53618207116050790111890112512.0000 | 0.0980 | | 52775460204830951003775827968.0000 | 8.57 | 15 | 53618207116050790111890112512.0000 | 0.0980 | | 52775460204830951003775827968.0000 | 9.71 | 17 | 53618207116050790111890112512.0000 | 0.0980 | | 52775460204830951003775827968.0000 | 10.86 | 19 | 53618207116050790111890112512.0000 | 0.0980 | | 52792343609480503040906625024.0000 | 12.0 | 21 | 53618207116050790111890112512.0000 | 0.0980 | | 52792343609480503040906625024.0000 | 12.57 | 22 | 53618207116050790111890112512.0000 | 0.0980 | | 52792343609480503040906625024.0000 | 13.71 | 24 | 53618207116050790111890112512.0000 | 0.0980 | | 52792343609480503040906625024.0000 | 14.86 | 26 | 53618207116050790111890112512.0000 | 0.0980 | | 52792343609480503040906625024.0000 | 16.0 | 28 | 53618207116050790111890112512.0000 | 0.0980 | | 52792343609480503040906625024.0000 | 16.57 | 29 | 53618207116050790111890112512.0000 | 0.0980 | | 52872559615505121741583155200.0000 | 17.71 | 31 | 53618207116050790111890112512.0000 | 0.0980 | | 52872559615505121741583155200.0000 | 18.86 | 33 | 53618207116050790111890112512.0000 | 0.0980 | | 52872559615505121741583155200.0000 | 20.0 | 35 | 53618207116050790111890112512.0000 | 0.0980 | | 52872559615505121741583155200.0000 | 20.57 | 36 | 53618207116050790111890112512.0000 | 0.0980 | | 52872559615505121741583155200.0000 | 21.71 | 38 | 53618207116050790111890112512.0000 | 0.0980 | | 52783892462422761283050799104.0000 | 22.86 | 40 | 53618207116050790111890112512.0000 | 0.0980 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0