--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-dmae-va-da-40B results: [] --- # vit-base-patch16-224-dmae-va-da-40B This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2421 - Accuracy: 0.9302 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.92 | 3 | 1.4669 | 0.3256 | | No log | 1.85 | 6 | 1.2689 | 0.4419 | | No log | 2.77 | 9 | 1.1591 | 0.4651 | | 1.3901 | 4.0 | 13 | 0.9778 | 0.5814 | | 1.3901 | 4.92 | 16 | 0.8885 | 0.6512 | | 1.3901 | 5.85 | 19 | 0.7885 | 0.6512 | | 0.9794 | 6.77 | 22 | 0.6854 | 0.7442 | | 0.9794 | 8.0 | 26 | 0.5822 | 0.7674 | | 0.9794 | 8.92 | 29 | 0.4929 | 0.8605 | | 0.6573 | 9.85 | 32 | 0.4822 | 0.8605 | | 0.6573 | 10.77 | 35 | 0.4529 | 0.8372 | | 0.6573 | 12.0 | 39 | 0.4203 | 0.7907 | | 0.4166 | 12.92 | 42 | 0.3889 | 0.8605 | | 0.4166 | 13.85 | 45 | 0.3697 | 0.8605 | | 0.4166 | 14.77 | 48 | 0.3991 | 0.8140 | | 0.3376 | 16.0 | 52 | 0.3038 | 0.9070 | | 0.3376 | 16.92 | 55 | 0.3139 | 0.8837 | | 0.3376 | 17.85 | 58 | 0.2821 | 0.8837 | | 0.191 | 18.77 | 61 | 0.2905 | 0.8837 | | 0.191 | 20.0 | 65 | 0.2616 | 0.8605 | | 0.191 | 20.92 | 68 | 0.2636 | 0.8837 | | 0.2065 | 21.85 | 71 | 0.2864 | 0.9070 | | 0.2065 | 22.77 | 74 | 0.2833 | 0.8605 | | 0.2065 | 24.0 | 78 | 0.2507 | 0.9070 | | 0.1328 | 24.92 | 81 | 0.2890 | 0.8837 | | 0.1328 | 25.85 | 84 | 0.3065 | 0.8837 | | 0.1328 | 26.77 | 87 | 0.2891 | 0.8837 | | 0.1065 | 28.0 | 91 | 0.2815 | 0.8837 | | 0.1065 | 28.92 | 94 | 0.2753 | 0.8837 | | 0.1065 | 29.85 | 97 | 0.2768 | 0.8837 | | 0.1122 | 30.77 | 100 | 0.2864 | 0.8837 | | 0.1122 | 32.0 | 104 | 0.2563 | 0.9070 | | 0.1122 | 32.92 | 107 | 0.2421 | 0.9302 | | 0.0879 | 33.85 | 110 | 0.2453 | 0.9070 | | 0.0879 | 34.77 | 113 | 0.2434 | 0.8837 | | 0.0879 | 36.0 | 117 | 0.2406 | 0.8837 | | 0.1082 | 36.92 | 120 | 0.2407 | 0.8837 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1