Augusto777 commited on
Commit
fb5ec40
1 Parent(s): 29bfc8c

Model save

Browse files
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: vit-base-patch16-224-ve-U13b-80RX3
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: validation
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8478260869565217
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # vit-base-patch16-224-ve-U13b-80RX3
32
+
33
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.8863
36
+ - Accuracy: 0.8478
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 4.74e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 16
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.05
64
+ - num_epochs: 40
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.33 | 0.99 | 51 | 1.3133 | 0.3478 |
71
+ | 1.0288 | 2.0 | 103 | 1.0045 | 0.5652 |
72
+ | 0.7322 | 2.99 | 154 | 0.7309 | 0.8043 |
73
+ | 0.5476 | 4.0 | 206 | 0.6316 | 0.7826 |
74
+ | 0.2863 | 4.99 | 257 | 0.5598 | 0.8043 |
75
+ | 0.3149 | 6.0 | 309 | 0.5428 | 0.8478 |
76
+ | 0.1489 | 6.99 | 360 | 0.5150 | 0.8696 |
77
+ | 0.1134 | 8.0 | 412 | 0.4585 | 0.8043 |
78
+ | 0.1613 | 8.99 | 463 | 0.6284 | 0.8478 |
79
+ | 0.1855 | 10.0 | 515 | 0.5985 | 0.8478 |
80
+ | 0.1908 | 10.99 | 566 | 1.0336 | 0.7391 |
81
+ | 0.2293 | 12.0 | 618 | 0.7746 | 0.8043 |
82
+ | 0.1414 | 12.99 | 669 | 0.6517 | 0.8261 |
83
+ | 0.0877 | 14.0 | 721 | 0.5639 | 0.8261 |
84
+ | 0.1302 | 14.99 | 772 | 0.7687 | 0.8261 |
85
+ | 0.047 | 16.0 | 824 | 0.6773 | 0.8696 |
86
+ | 0.1045 | 16.99 | 875 | 0.4344 | 0.9130 |
87
+ | 0.0751 | 18.0 | 927 | 1.0160 | 0.7391 |
88
+ | 0.1141 | 18.99 | 978 | 0.6643 | 0.8696 |
89
+ | 0.1756 | 20.0 | 1030 | 0.5582 | 0.8913 |
90
+ | 0.1212 | 20.99 | 1081 | 0.5641 | 0.8913 |
91
+ | 0.0903 | 22.0 | 1133 | 0.6990 | 0.8261 |
92
+ | 0.0693 | 22.99 | 1184 | 0.5548 | 0.8913 |
93
+ | 0.0048 | 24.0 | 1236 | 0.6958 | 0.8478 |
94
+ | 0.0785 | 24.99 | 1287 | 0.7886 | 0.8043 |
95
+ | 0.0373 | 26.0 | 1339 | 0.6345 | 0.8478 |
96
+ | 0.0763 | 26.99 | 1390 | 0.6830 | 0.8696 |
97
+ | 0.0621 | 28.0 | 1442 | 0.7294 | 0.8478 |
98
+ | 0.0367 | 28.99 | 1493 | 0.6636 | 0.8696 |
99
+ | 0.0124 | 30.0 | 1545 | 0.8031 | 0.8478 |
100
+ | 0.0759 | 30.99 | 1596 | 0.7076 | 0.8696 |
101
+ | 0.0786 | 32.0 | 1648 | 0.8024 | 0.8261 |
102
+ | 0.0487 | 32.99 | 1699 | 0.7927 | 0.8696 |
103
+ | 0.0664 | 34.0 | 1751 | 0.9607 | 0.8261 |
104
+ | 0.0054 | 34.99 | 1802 | 0.9702 | 0.8261 |
105
+ | 0.0277 | 36.0 | 1854 | 0.8351 | 0.8261 |
106
+ | 0.0025 | 36.99 | 1905 | 0.9318 | 0.8261 |
107
+ | 0.0188 | 38.0 | 1957 | 0.8995 | 0.8478 |
108
+ | 0.0385 | 38.99 | 2008 | 0.8928 | 0.8478 |
109
+ | 0.0474 | 39.61 | 2040 | 0.8863 | 0.8478 |
110
+
111
+
112
+ ### Framework versions
113
+
114
+ - Transformers 4.36.2
115
+ - Pytorch 2.1.2+cu118
116
+ - Datasets 2.16.1
117
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:190395cf0e2e59e6b64408a761c5190c76c70849fe85dba78cf75c72116048be
3
  size 343230128
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a81cec27114aa3238012e1f3817ef8752998862ba74710ee9b3f882c7a4c2eb
3
  size 343230128
runs/Jul01_17-52-59_DESKTOP-SKBE9FB/events.out.tfevents.1719877981.DESKTOP-SKBE9FB.11740.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:048f2ef1ad8a9fc35668098aea76196abc3e8b1cb1688c373d988ea111198aee
3
- size 48616
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afd9ea01a41951687b6f09d2b94044ba61f4d580848b5686966693a178b54c79
3
+ size 49764