# from typing import Dict, List, Any from transformers import pipeline from transformers import ( AutomaticSpeechRecognitionPipeline, WhisperForConditionalGeneration, WhisperTokenizer, WhisperProcessor, ) # import faster_whisper # import json import logging from peft import PeftModel, PeftConfig import torch logger = logging.getLogger(__name__) class EndpointHandler(): def __init__(self, path=""): peft_model_id = "Awaz-e-Sehat/whisper-fine-tune-new-LoRA" # Use the same model ID as before. peft_config = PeftConfig.from_pretrained(peft_model_id) model = WhisperForConditionalGeneration.from_pretrained(peft_config.base_model_name_or_path,load_in_8bit=True,device_map="auto") # self.model = faster_whisper.WhisperModel(path, device = "cuda") language = "Urdu" task = "transcribe" model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) feature_extractor = processor.feature_extractor self.forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task) self.pipe = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, chunk_length_s = 30, stride_length_s = 5) logger.info("Model Initialized") def __call__(self, data: Any) -> str: """ data args: inputs (:obj: `str`) date (:obj: `str`) Return: A :obj:`list` | `dict`: will be serialized and returned """ # get inputs logger.info("In inference") logger.info(data) inputs = data.pop("inputs",data) logger.info("Data pop") logger.info(inputs) # segments, _ = self.model.transcribe(inputs, language = "ur", task = "transcribe") # logger.info("model transcribe") # segments = list(segments) # logger.info("Actual transcribed") # prediction = '' # for i in segments: # prediction += i[4] # return prediction with torch.cuda.amp.autocast(): text = self.pipe(inputs, generate_kwargs={"forced_decoder_ids": self.forced_decoder_ids}, max_new_tokens=255)["text"] return text