AykeeSalazar commited on
Commit
daa714f
1 Parent(s): aeeda82

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: vc-bantai-vit-withoutAMBI-adunest-trial
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ args: Violation-Classification---Raw-9
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.7797741273100616
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # vc-bantai-vit-withoutAMBI-adunest-trial
29
+
30
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.4289
33
+ - Accuracy: 0.7798
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 0.0005
53
+ - train_batch_size: 32
54
+ - eval_batch_size: 32
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - num_epochs: 2
59
+ - mixed_precision_training: Native AMP
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
64
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
65
+ | No log | 0.4 | 100 | 1.0782 | 0.4451 |
66
+ | No log | 0.8 | 200 | 0.5634 | 0.7156 |
67
+ | No log | 1.2 | 300 | 0.7181 | 0.6684 |
68
+ | No log | 1.61 | 400 | 0.4289 | 0.7798 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.20.1
74
+ - Pytorch 1.12.0+cu113
75
+ - Datasets 2.3.2
76
+ - Tokenizers 0.12.1