AykeeSalazar
commited on
Commit
•
b03019b
1
Parent(s):
b636a53
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: vc-bantai-vit-withoutAMBI-adunest
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
args: Violation-Classification---Raw-6
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value: 0.9388646288209607
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# vc-bantai-vit-withoutAMBI-adunest
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 0.1950
|
33 |
+
- Accuracy: 0.9389
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 0.0005
|
53 |
+
- train_batch_size: 16
|
54 |
+
- eval_batch_size: 16
|
55 |
+
- seed: 42
|
56 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
+
- lr_scheduler_type: linear
|
58 |
+
- num_epochs: 4
|
59 |
+
- mixed_precision_training: Native AMP
|
60 |
+
|
61 |
+
### Training results
|
62 |
+
|
63 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
64 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
65 |
+
| 0.4821 | 0.11 | 100 | 0.7644 | 0.6714 |
|
66 |
+
| 0.7032 | 0.23 | 200 | 0.5568 | 0.75 |
|
67 |
+
| 0.5262 | 0.34 | 300 | 0.4440 | 0.7806 |
|
68 |
+
| 0.4719 | 0.45 | 400 | 0.3893 | 0.8144 |
|
69 |
+
| 0.5021 | 0.57 | 500 | 0.5129 | 0.8090 |
|
70 |
+
| 0.3123 | 0.68 | 600 | 0.4536 | 0.7980 |
|
71 |
+
| 0.3606 | 0.79 | 700 | 0.3679 | 0.8483 |
|
72 |
+
| 0.4081 | 0.91 | 800 | 0.3335 | 0.8559 |
|
73 |
+
| 0.3624 | 1.02 | 900 | 0.3149 | 0.8592 |
|
74 |
+
| 0.1903 | 1.14 | 1000 | 0.3296 | 0.8766 |
|
75 |
+
| 0.334 | 1.25 | 1100 | 0.2832 | 0.8897 |
|
76 |
+
| 0.2731 | 1.36 | 1200 | 0.2546 | 0.8930 |
|
77 |
+
| 0.311 | 1.48 | 1300 | 0.2585 | 0.8908 |
|
78 |
+
| 0.3209 | 1.59 | 1400 | 0.2701 | 0.8854 |
|
79 |
+
| 0.4005 | 1.7 | 1500 | 0.2643 | 0.8897 |
|
80 |
+
| 0.3128 | 1.82 | 1600 | 0.2864 | 0.8843 |
|
81 |
+
| 0.3376 | 1.93 | 1700 | 0.2882 | 0.8657 |
|
82 |
+
| 0.2698 | 2.04 | 1800 | 0.2876 | 0.9028 |
|
83 |
+
| 0.2347 | 2.16 | 1900 | 0.2405 | 0.8974 |
|
84 |
+
| 0.2436 | 2.27 | 2000 | 0.2804 | 0.8886 |
|
85 |
+
| 0.1764 | 2.38 | 2100 | 0.2852 | 0.8952 |
|
86 |
+
| 0.1197 | 2.5 | 2200 | 0.2312 | 0.9127 |
|
87 |
+
| 0.1082 | 2.61 | 2300 | 0.2133 | 0.9116 |
|
88 |
+
| 0.1245 | 2.72 | 2400 | 0.2677 | 0.8985 |
|
89 |
+
| 0.1335 | 2.84 | 2500 | 0.2098 | 0.9181 |
|
90 |
+
| 0.2194 | 2.95 | 2600 | 0.1911 | 0.9127 |
|
91 |
+
| 0.089 | 3.06 | 2700 | 0.2062 | 0.9181 |
|
92 |
+
| 0.0465 | 3.18 | 2800 | 0.2414 | 0.9247 |
|
93 |
+
| 0.0985 | 3.29 | 2900 | 0.1869 | 0.9389 |
|
94 |
+
| 0.1113 | 3.41 | 3000 | 0.1819 | 0.9323 |
|
95 |
+
| 0.1392 | 3.52 | 3100 | 0.2101 | 0.9312 |
|
96 |
+
| 0.0621 | 3.63 | 3200 | 0.2201 | 0.9367 |
|
97 |
+
| 0.1168 | 3.75 | 3300 | 0.1935 | 0.9389 |
|
98 |
+
| 0.059 | 3.86 | 3400 | 0.1946 | 0.9367 |
|
99 |
+
| 0.0513 | 3.97 | 3500 | 0.1950 | 0.9389 |
|
100 |
+
|
101 |
+
|
102 |
+
### Framework versions
|
103 |
+
|
104 |
+
- Transformers 4.20.1
|
105 |
+
- Pytorch 1.12.0+cu113
|
106 |
+
- Datasets 2.3.2
|
107 |
+
- Tokenizers 0.12.1
|