AykeeSalazar
commited on
Commit
•
7b08026
1
Parent(s):
7f0cc9e
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- image_folder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: violation-classification-bantai-vit-v80ep
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: image_folder
|
17 |
+
type: image_folder
|
18 |
+
args: default
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value: 0.9559725730783111
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# violation-classification-bantai-vit-v80ep
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 0.1974
|
33 |
+
- Accuracy: 0.9560
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 5e-05
|
53 |
+
- train_batch_size: 32
|
54 |
+
- eval_batch_size: 32
|
55 |
+
- seed: 42
|
56 |
+
- gradient_accumulation_steps: 4
|
57 |
+
- total_train_batch_size: 128
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_ratio: 0.1
|
61 |
+
- num_epochs: 80
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 0.797 | 4.95 | 500 | 0.3926 | 0.8715 |
|
68 |
+
| 0.3095 | 9.9 | 1000 | 0.2597 | 0.9107 |
|
69 |
+
| 0.1726 | 14.85 | 1500 | 0.2157 | 0.9253 |
|
70 |
+
| 0.1259 | 19.8 | 2000 | 0.1870 | 0.9392 |
|
71 |
+
| 0.0959 | 24.75 | 2500 | 0.1797 | 0.9444 |
|
72 |
+
| 0.0835 | 29.7 | 3000 | 0.2293 | 0.9354 |
|
73 |
+
| 0.0722 | 34.65 | 3500 | 0.1921 | 0.9441 |
|
74 |
+
| 0.0628 | 39.6 | 4000 | 0.1897 | 0.9491 |
|
75 |
+
| 0.059 | 44.55 | 4500 | 0.1719 | 0.9520 |
|
76 |
+
| 0.0531 | 49.5 | 5000 | 0.1987 | 0.9513 |
|
77 |
+
| 0.046 | 54.45 | 5500 | 0.1713 | 0.9556 |
|
78 |
+
| 0.0444 | 59.4 | 6000 | 0.2016 | 0.9525 |
|
79 |
+
| 0.042 | 64.36 | 6500 | 0.1950 | 0.9525 |
|
80 |
+
| 0.0363 | 69.31 | 7000 | 0.2017 | 0.9549 |
|
81 |
+
| 0.037 | 74.26 | 7500 | 0.1943 | 0.9551 |
|
82 |
+
| 0.0343 | 79.21 | 8000 | 0.1974 | 0.9560 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.17.0
|
88 |
+
- Pytorch 1.10.0+cu111
|
89 |
+
- Datasets 2.0.0
|
90 |
+
- Tokenizers 0.11.6
|