Upload configuration_aquila.py with huggingface_hub
Browse files- configuration_aquila.py +80 -16
configuration_aquila.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
3 |
#
|
4 |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
# and OPT implementations in this library. It has been modified from its
|
@@ -17,10 +17,17 @@
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
|
|
|
|
20 |
""" Aquila model configuration"""
|
21 |
|
22 |
-
from transformers import PretrainedConfig
|
|
|
|
|
23 |
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
class AquilaConfig(PretrainedConfig):
|
@@ -34,7 +41,7 @@ class AquilaConfig(PretrainedConfig):
|
|
34 |
|
35 |
|
36 |
Args:
|
37 |
-
vocab_size (`int`, *optional*, defaults to
|
38 |
Vocabulary size of the Aquila model. Defines the number of different tokens that can be represented by the
|
39 |
`inputs_ids` passed when calling [`AquilaModel`]
|
40 |
hidden_size (`int`, *optional*, defaults to 4096):
|
@@ -42,24 +49,55 @@ class AquilaConfig(PretrainedConfig):
|
|
42 |
intermediate_size (`int`, *optional*, defaults to 11008):
|
43 |
Dimension of the MLP representations.
|
44 |
num_hidden_layers (`int`, *optional*, defaults to 32):
|
45 |
-
Number of hidden layers in the Transformer
|
46 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
47 |
-
Number of attention heads for each attention layer in the Transformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
49 |
The non-linear activation function (function or string) in the decoder.
|
50 |
-
max_position_embeddings (`int`, *optional*, defaults to
|
51 |
-
The maximum sequence length that this model might ever be used with.
|
52 |
-
just in case (e.g., 512 or 1024 or 2048).
|
53 |
initializer_range (`float`, *optional*, defaults to 0.02):
|
54 |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
55 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-
|
56 |
The epsilon used by the rms normalization layers.
|
57 |
use_cache (`bool`, *optional*, defaults to `True`):
|
58 |
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
59 |
relevant if `config.is_decoder=True`.
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
Whether to tie weight embeddings
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
```python
|
65 |
>>> from transformers import AquilaModel, AquilaConfig
|
@@ -73,29 +111,32 @@ class AquilaConfig(PretrainedConfig):
|
|
73 |
>>> # Accessing the model configuration
|
74 |
>>> configuration = model.config
|
75 |
```"""
|
|
|
76 |
model_type = "aquila"
|
77 |
keys_to_ignore_at_inference = ["past_key_values"]
|
78 |
|
79 |
def __init__(
|
80 |
self,
|
81 |
-
vocab_size=
|
82 |
hidden_size=4096,
|
83 |
intermediate_size=11008,
|
84 |
num_hidden_layers=32,
|
85 |
num_attention_heads=32,
|
86 |
num_key_value_heads=None,
|
87 |
hidden_act="silu",
|
88 |
-
max_position_embeddings=
|
89 |
initializer_range=0.02,
|
90 |
rms_norm_eps=1e-6,
|
91 |
use_cache=True,
|
92 |
-
pad_token_id=
|
93 |
bos_token_id=1,
|
94 |
eos_token_id=2,
|
95 |
pretraining_tp=1,
|
96 |
tie_word_embeddings=False,
|
97 |
rope_theta=10000.0,
|
98 |
rope_scaling=None,
|
|
|
|
|
99 |
**kwargs,
|
100 |
):
|
101 |
self.vocab_size = vocab_size
|
@@ -103,14 +144,13 @@ class AquilaConfig(PretrainedConfig):
|
|
103 |
self.hidden_size = hidden_size
|
104 |
self.intermediate_size = intermediate_size
|
105 |
self.num_hidden_layers = num_hidden_layers
|
|
|
106 |
|
107 |
# for backward compatibility
|
108 |
if num_key_value_heads is None:
|
109 |
num_key_value_heads = num_attention_heads
|
110 |
|
111 |
self.num_key_value_heads = num_key_value_heads
|
112 |
-
|
113 |
-
self.num_attention_heads = num_attention_heads
|
114 |
self.hidden_act = hidden_act
|
115 |
self.initializer_range = initializer_range
|
116 |
self.rms_norm_eps = rms_norm_eps
|
@@ -118,6 +158,9 @@ class AquilaConfig(PretrainedConfig):
|
|
118 |
self.use_cache = use_cache
|
119 |
self.rope_theta = rope_theta
|
120 |
self.rope_scaling = rope_scaling
|
|
|
|
|
|
|
121 |
|
122 |
super().__init__(
|
123 |
pad_token_id=pad_token_id,
|
@@ -126,3 +169,24 @@ class AquilaConfig(PretrainedConfig):
|
|
126 |
tie_word_embeddings=tie_word_embeddings,
|
127 |
**kwargs,
|
128 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
#
|
4 |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
# and OPT implementations in this library. It has been modified from its
|
|
|
17 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
# See the License for the specific language governing permissions and
|
19 |
# limitations under the License.
|
20 |
+
|
21 |
+
# Most of the source code is adapted from Llama's source code
|
22 |
""" Aquila model configuration"""
|
23 |
|
24 |
+
from transformers.configuration_utils import PretrainedConfig
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
AQUILA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
31 |
|
32 |
|
33 |
class AquilaConfig(PretrainedConfig):
|
|
|
41 |
|
42 |
|
43 |
Args:
|
44 |
+
vocab_size (`int`, *optional*, defaults to 143973):
|
45 |
Vocabulary size of the Aquila model. Defines the number of different tokens that can be represented by the
|
46 |
`inputs_ids` passed when calling [`AquilaModel`]
|
47 |
hidden_size (`int`, *optional*, defaults to 4096):
|
|
|
49 |
intermediate_size (`int`, *optional*, defaults to 11008):
|
50 |
Dimension of the MLP representations.
|
51 |
num_hidden_layers (`int`, *optional*, defaults to 32):
|
52 |
+
Number of hidden layers in the Transformer decoder.
|
53 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
54 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
55 |
+
num_key_value_heads (`int`, *optional*):
|
56 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
57 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
58 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
59 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
60 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
61 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
62 |
+
`num_attention_heads`.
|
63 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
64 |
The non-linear activation function (function or string) in the decoder.
|
65 |
+
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
66 |
+
The maximum sequence length that this model might ever be used with.
|
|
|
67 |
initializer_range (`float`, *optional*, defaults to 0.02):
|
68 |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
70 |
The epsilon used by the rms normalization layers.
|
71 |
use_cache (`bool`, *optional*, defaults to `True`):
|
72 |
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
73 |
relevant if `config.is_decoder=True`.
|
74 |
+
pad_token_id (`int`, *optional*):
|
75 |
+
Padding token id.
|
76 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
77 |
+
Beginning of stream token id.
|
78 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
79 |
+
End of stream token id.
|
80 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
81 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
82 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
|
83 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
84 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
85 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
86 |
Whether to tie weight embeddings
|
87 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
88 |
+
The base period of the RoPE embeddings.
|
89 |
+
rope_scaling (`Dict`, *optional*):
|
90 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
91 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
92 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
93 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
94 |
+
these scaling strategies behave:
|
95 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
96 |
+
experimental feature, subject to breaking API changes in future versions.
|
97 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
98 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
99 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
100 |
+
The dropout ratio for the attention probabilities.
|
101 |
|
102 |
```python
|
103 |
>>> from transformers import AquilaModel, AquilaConfig
|
|
|
111 |
>>> # Accessing the model configuration
|
112 |
>>> configuration = model.config
|
113 |
```"""
|
114 |
+
|
115 |
model_type = "aquila"
|
116 |
keys_to_ignore_at_inference = ["past_key_values"]
|
117 |
|
118 |
def __init__(
|
119 |
self,
|
120 |
+
vocab_size=143973,
|
121 |
hidden_size=4096,
|
122 |
intermediate_size=11008,
|
123 |
num_hidden_layers=32,
|
124 |
num_attention_heads=32,
|
125 |
num_key_value_heads=None,
|
126 |
hidden_act="silu",
|
127 |
+
max_position_embeddings=8192,
|
128 |
initializer_range=0.02,
|
129 |
rms_norm_eps=1e-6,
|
130 |
use_cache=True,
|
131 |
+
pad_token_id=None,
|
132 |
bos_token_id=1,
|
133 |
eos_token_id=2,
|
134 |
pretraining_tp=1,
|
135 |
tie_word_embeddings=False,
|
136 |
rope_theta=10000.0,
|
137 |
rope_scaling=None,
|
138 |
+
attention_bias=False,
|
139 |
+
attention_dropout=0.0,
|
140 |
**kwargs,
|
141 |
):
|
142 |
self.vocab_size = vocab_size
|
|
|
144 |
self.hidden_size = hidden_size
|
145 |
self.intermediate_size = intermediate_size
|
146 |
self.num_hidden_layers = num_hidden_layers
|
147 |
+
self.num_attention_heads = num_attention_heads
|
148 |
|
149 |
# for backward compatibility
|
150 |
if num_key_value_heads is None:
|
151 |
num_key_value_heads = num_attention_heads
|
152 |
|
153 |
self.num_key_value_heads = num_key_value_heads
|
|
|
|
|
154 |
self.hidden_act = hidden_act
|
155 |
self.initializer_range = initializer_range
|
156 |
self.rms_norm_eps = rms_norm_eps
|
|
|
158 |
self.use_cache = use_cache
|
159 |
self.rope_theta = rope_theta
|
160 |
self.rope_scaling = rope_scaling
|
161 |
+
self._rope_scaling_validation()
|
162 |
+
self.attention_bias = attention_bias
|
163 |
+
self.attention_dropout = attention_dropout
|
164 |
|
165 |
super().__init__(
|
166 |
pad_token_id=pad_token_id,
|
|
|
169 |
tie_word_embeddings=tie_word_embeddings,
|
170 |
**kwargs,
|
171 |
)
|
172 |
+
|
173 |
+
def _rope_scaling_validation(self):
|
174 |
+
"""
|
175 |
+
Validate the `rope_scaling` configuration.
|
176 |
+
"""
|
177 |
+
if self.rope_scaling is None:
|
178 |
+
return
|
179 |
+
|
180 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
181 |
+
raise ValueError(
|
182 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
183 |
+
f"got {self.rope_scaling}"
|
184 |
+
)
|
185 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
186 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
187 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
188 |
+
raise ValueError(
|
189 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
190 |
+
)
|
191 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
192 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|