# coding=utf-8 # Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Qwen2.""" from typing import Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_qwen2 import Qwen2Tokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/vocab.json"}, "merges_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/merges.txt"}, "tokenizer_file": { "qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/tokenizer.json" }, } MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768} class Qwen2TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level Byte-Pair-Encoding. Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import Qwen2TokenizerFast >>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer") >>> tokenizer("Hello world")["input_ids"] [9707, 1879] >>> tokenizer(" Hello world")["input_ids"] [21927, 1879] ``` This is expected. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): Path to the vocabulary file. merges_file (`str`, *optional*): Path to the merges file. tokenizer_file (`str`, *optional*): Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that contains everything needed to load the tokenizer. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. Not applicable to this tokenizer. bos_token (`str`, *optional*): The beginning of sequence token. Not applicable for this tokenizer. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The token used for padding, for example when batching sequences of different lengths. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = MAX_MODEL_INPUT_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = Qwen2Tokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token=None, eos_token="<|endoftext|>", pad_token="<|endoftext|>", **kwargs, ): # We need to at least pass vocab_file and merges_file to base class # in case a slow tokenizer needs to be initialized; other can be # configured through files. # following GPT2TokenizerFast, also adding unk_token, bos_token, and eos_token bos_token = ( AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(bos_token, str) else bos_token ) eos_token = ( AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(eos_token, str) else eos_token ) unk_token = ( AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(unk_token, str) else unk_token ) pad_token = ( AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False) if isinstance(pad_token, str) else pad_token ) super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs, ) # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)