BAAI
/

ryanzhangfan commited on
Commit
705a7b5
1 Parent(s): 5d56bea

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -1
README.md CHANGED
@@ -16,9 +16,11 @@ import sys
16
  sys.path.append(PATH_TO_BAAI_Emu3-Gen_MODEL)
17
  from processing_emu3 import Emu3Processor
18
 
 
19
  EMU_HUB = "BAAI/Emu3-Gen"
20
  VQ_HUB = "BAAI/Emu3-VisionTokenizer"
21
 
 
22
  model = AutoModelForCausalLM.from_pretrained(
23
  EMU_HUB,
24
  device_map="cuda:0",
@@ -32,6 +34,7 @@ image_processor = AutoImageProcessor.from_pretrained(VQ_HUB, trust_remote_code=T
32
  image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()
33
  processor = Emu3Processor(image_processor, image_tokenizer, tokenizer)
34
 
 
35
  POSITIVE_PROMPT = " masterpiece, film grained, best quality."
36
  NEGATIVE_PROMPT = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry."
37
 
@@ -48,6 +51,7 @@ kwargs = dict(
48
  pos_inputs = processor(text=prompt, **kwargs)
49
  neg_inputs = processor(text=NEGATIVE_PROMPT, **kwargs)
50
 
 
51
  GENERATION_CONFIG = GenerationConfig(
52
  use_cache=True,
53
  eos_token_id=model.config.eos_token_id,
@@ -71,6 +75,7 @@ logits_processor = LogitsProcessorList([
71
  ),
72
  ])
73
 
 
74
  outputs = model.generate(
75
  pos_inputs.input_ids.to("cuda:0"),
76
  GENERATION_CONFIG,
@@ -78,7 +83,6 @@ outputs = model.generate(
78
  )
79
 
80
  mm_list = processor.decode(outputs[0])
81
- print(mm_list)
82
  for idx, im in enumerate(mm_list):
83
  if not isinstance(im, Image.Image):
84
  continue
 
16
  sys.path.append(PATH_TO_BAAI_Emu3-Gen_MODEL)
17
  from processing_emu3 import Emu3Processor
18
 
19
+ # model path
20
  EMU_HUB = "BAAI/Emu3-Gen"
21
  VQ_HUB = "BAAI/Emu3-VisionTokenizer"
22
 
23
+ # prepare model and processor
24
  model = AutoModelForCausalLM.from_pretrained(
25
  EMU_HUB,
26
  device_map="cuda:0",
 
34
  image_tokenizer = AutoModel.from_pretrained(VQ_HUB, device_map="cuda:0", trust_remote_code=True).eval()
35
  processor = Emu3Processor(image_processor, image_tokenizer, tokenizer)
36
 
37
+ # prepare input
38
  POSITIVE_PROMPT = " masterpiece, film grained, best quality."
39
  NEGATIVE_PROMPT = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry."
40
 
 
51
  pos_inputs = processor(text=prompt, **kwargs)
52
  neg_inputs = processor(text=NEGATIVE_PROMPT, **kwargs)
53
 
54
+ # prepare hyper parameters
55
  GENERATION_CONFIG = GenerationConfig(
56
  use_cache=True,
57
  eos_token_id=model.config.eos_token_id,
 
75
  ),
76
  ])
77
 
78
+ # generate
79
  outputs = model.generate(
80
  pos_inputs.input_ids.to("cuda:0"),
81
  GENERATION_CONFIG,
 
83
  )
84
 
85
  mm_list = processor.decode(outputs[0])
 
86
  for idx, im in enumerate(mm_list):
87
  if not isinstance(im, Image.Image):
88
  continue