update
Browse files
README.md
CHANGED
@@ -1,2609 +1,16 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
-
-
|
4 |
-
-
|
|
|
5 |
- transformers
|
6 |
-
model-index:
|
7 |
-
- name: bge-large-en
|
8 |
-
results:
|
9 |
-
- task:
|
10 |
-
type: Classification
|
11 |
-
dataset:
|
12 |
-
type: mteb/amazon_counterfactual
|
13 |
-
name: MTEB AmazonCounterfactualClassification (en)
|
14 |
-
config: en
|
15 |
-
split: test
|
16 |
-
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
17 |
-
metrics:
|
18 |
-
- type: accuracy
|
19 |
-
value: 76.94029850746269
|
20 |
-
- type: ap
|
21 |
-
value: 40.00228964744091
|
22 |
-
- type: f1
|
23 |
-
value: 70.86088267934595
|
24 |
-
- task:
|
25 |
-
type: Classification
|
26 |
-
dataset:
|
27 |
-
type: mteb/amazon_polarity
|
28 |
-
name: MTEB AmazonPolarityClassification
|
29 |
-
config: default
|
30 |
-
split: test
|
31 |
-
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
32 |
-
metrics:
|
33 |
-
- type: accuracy
|
34 |
-
value: 91.93745
|
35 |
-
- type: ap
|
36 |
-
value: 88.24758534667426
|
37 |
-
- type: f1
|
38 |
-
value: 91.91033034217591
|
39 |
-
- task:
|
40 |
-
type: Classification
|
41 |
-
dataset:
|
42 |
-
type: mteb/amazon_reviews_multi
|
43 |
-
name: MTEB AmazonReviewsClassification (en)
|
44 |
-
config: en
|
45 |
-
split: test
|
46 |
-
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
47 |
-
metrics:
|
48 |
-
- type: accuracy
|
49 |
-
value: 46.158
|
50 |
-
- type: f1
|
51 |
-
value: 45.78935185074774
|
52 |
-
- task:
|
53 |
-
type: Retrieval
|
54 |
-
dataset:
|
55 |
-
type: arguana
|
56 |
-
name: MTEB ArguAna
|
57 |
-
config: default
|
58 |
-
split: test
|
59 |
-
revision: None
|
60 |
-
metrics:
|
61 |
-
- type: map_at_1
|
62 |
-
value: 39.972
|
63 |
-
- type: map_at_10
|
64 |
-
value: 54.874
|
65 |
-
- type: map_at_100
|
66 |
-
value: 55.53399999999999
|
67 |
-
- type: map_at_1000
|
68 |
-
value: 55.539
|
69 |
-
- type: map_at_3
|
70 |
-
value: 51.031000000000006
|
71 |
-
- type: map_at_5
|
72 |
-
value: 53.342999999999996
|
73 |
-
- type: mrr_at_1
|
74 |
-
value: 40.541
|
75 |
-
- type: mrr_at_10
|
76 |
-
value: 55.096000000000004
|
77 |
-
- type: mrr_at_100
|
78 |
-
value: 55.75599999999999
|
79 |
-
- type: mrr_at_1000
|
80 |
-
value: 55.761
|
81 |
-
- type: mrr_at_3
|
82 |
-
value: 51.221000000000004
|
83 |
-
- type: mrr_at_5
|
84 |
-
value: 53.568000000000005
|
85 |
-
- type: ndcg_at_1
|
86 |
-
value: 39.972
|
87 |
-
- type: ndcg_at_10
|
88 |
-
value: 62.456999999999994
|
89 |
-
- type: ndcg_at_100
|
90 |
-
value: 65.262
|
91 |
-
- type: ndcg_at_1000
|
92 |
-
value: 65.389
|
93 |
-
- type: ndcg_at_3
|
94 |
-
value: 54.673
|
95 |
-
- type: ndcg_at_5
|
96 |
-
value: 58.80499999999999
|
97 |
-
- type: precision_at_1
|
98 |
-
value: 39.972
|
99 |
-
- type: precision_at_10
|
100 |
-
value: 8.634
|
101 |
-
- type: precision_at_100
|
102 |
-
value: 0.9860000000000001
|
103 |
-
- type: precision_at_1000
|
104 |
-
value: 0.1
|
105 |
-
- type: precision_at_3
|
106 |
-
value: 21.740000000000002
|
107 |
-
- type: precision_at_5
|
108 |
-
value: 15.036
|
109 |
-
- type: recall_at_1
|
110 |
-
value: 39.972
|
111 |
-
- type: recall_at_10
|
112 |
-
value: 86.344
|
113 |
-
- type: recall_at_100
|
114 |
-
value: 98.578
|
115 |
-
- type: recall_at_1000
|
116 |
-
value: 99.57300000000001
|
117 |
-
- type: recall_at_3
|
118 |
-
value: 65.22
|
119 |
-
- type: recall_at_5
|
120 |
-
value: 75.178
|
121 |
-
- task:
|
122 |
-
type: Clustering
|
123 |
-
dataset:
|
124 |
-
type: mteb/arxiv-clustering-p2p
|
125 |
-
name: MTEB ArxivClusteringP2P
|
126 |
-
config: default
|
127 |
-
split: test
|
128 |
-
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
129 |
-
metrics:
|
130 |
-
- type: v_measure
|
131 |
-
value: 48.94652870403906
|
132 |
-
- task:
|
133 |
-
type: Clustering
|
134 |
-
dataset:
|
135 |
-
type: mteb/arxiv-clustering-s2s
|
136 |
-
name: MTEB ArxivClusteringS2S
|
137 |
-
config: default
|
138 |
-
split: test
|
139 |
-
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
140 |
-
metrics:
|
141 |
-
- type: v_measure
|
142 |
-
value: 43.17257160340209
|
143 |
-
- task:
|
144 |
-
type: Reranking
|
145 |
-
dataset:
|
146 |
-
type: mteb/askubuntudupquestions-reranking
|
147 |
-
name: MTEB AskUbuntuDupQuestions
|
148 |
-
config: default
|
149 |
-
split: test
|
150 |
-
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
151 |
-
metrics:
|
152 |
-
- type: map
|
153 |
-
value: 63.97867370559182
|
154 |
-
- type: mrr
|
155 |
-
value: 77.00820032537484
|
156 |
-
- task:
|
157 |
-
type: STS
|
158 |
-
dataset:
|
159 |
-
type: mteb/biosses-sts
|
160 |
-
name: MTEB BIOSSES
|
161 |
-
config: default
|
162 |
-
split: test
|
163 |
-
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
164 |
-
metrics:
|
165 |
-
- type: cos_sim_pearson
|
166 |
-
value: 80.00986015960616
|
167 |
-
- type: cos_sim_spearman
|
168 |
-
value: 80.36387933827882
|
169 |
-
- type: euclidean_pearson
|
170 |
-
value: 80.32305287257296
|
171 |
-
- type: euclidean_spearman
|
172 |
-
value: 82.0524720308763
|
173 |
-
- type: manhattan_pearson
|
174 |
-
value: 80.19847473906454
|
175 |
-
- type: manhattan_spearman
|
176 |
-
value: 81.87957652506985
|
177 |
-
- task:
|
178 |
-
type: Classification
|
179 |
-
dataset:
|
180 |
-
type: mteb/banking77
|
181 |
-
name: MTEB Banking77Classification
|
182 |
-
config: default
|
183 |
-
split: test
|
184 |
-
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
185 |
-
metrics:
|
186 |
-
- type: accuracy
|
187 |
-
value: 88.00000000000001
|
188 |
-
- type: f1
|
189 |
-
value: 87.99039027511853
|
190 |
-
- task:
|
191 |
-
type: Clustering
|
192 |
-
dataset:
|
193 |
-
type: mteb/biorxiv-clustering-p2p
|
194 |
-
name: MTEB BiorxivClusteringP2P
|
195 |
-
config: default
|
196 |
-
split: test
|
197 |
-
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
198 |
-
metrics:
|
199 |
-
- type: v_measure
|
200 |
-
value: 41.36932844640705
|
201 |
-
- task:
|
202 |
-
type: Clustering
|
203 |
-
dataset:
|
204 |
-
type: mteb/biorxiv-clustering-s2s
|
205 |
-
name: MTEB BiorxivClusteringS2S
|
206 |
-
config: default
|
207 |
-
split: test
|
208 |
-
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
209 |
-
metrics:
|
210 |
-
- type: v_measure
|
211 |
-
value: 38.34983239611985
|
212 |
-
- task:
|
213 |
-
type: Retrieval
|
214 |
-
dataset:
|
215 |
-
type: BeIR/cqadupstack
|
216 |
-
name: MTEB CQADupstackAndroidRetrieval
|
217 |
-
config: default
|
218 |
-
split: test
|
219 |
-
revision: None
|
220 |
-
metrics:
|
221 |
-
- type: map_at_1
|
222 |
-
value: 32.257999999999996
|
223 |
-
- type: map_at_10
|
224 |
-
value: 42.937
|
225 |
-
- type: map_at_100
|
226 |
-
value: 44.406
|
227 |
-
- type: map_at_1000
|
228 |
-
value: 44.536
|
229 |
-
- type: map_at_3
|
230 |
-
value: 39.22
|
231 |
-
- type: map_at_5
|
232 |
-
value: 41.458
|
233 |
-
- type: mrr_at_1
|
234 |
-
value: 38.769999999999996
|
235 |
-
- type: mrr_at_10
|
236 |
-
value: 48.701
|
237 |
-
- type: mrr_at_100
|
238 |
-
value: 49.431000000000004
|
239 |
-
- type: mrr_at_1000
|
240 |
-
value: 49.476
|
241 |
-
- type: mrr_at_3
|
242 |
-
value: 45.875
|
243 |
-
- type: mrr_at_5
|
244 |
-
value: 47.67
|
245 |
-
- type: ndcg_at_1
|
246 |
-
value: 38.769999999999996
|
247 |
-
- type: ndcg_at_10
|
248 |
-
value: 49.35
|
249 |
-
- type: ndcg_at_100
|
250 |
-
value: 54.618
|
251 |
-
- type: ndcg_at_1000
|
252 |
-
value: 56.655
|
253 |
-
- type: ndcg_at_3
|
254 |
-
value: 43.826
|
255 |
-
- type: ndcg_at_5
|
256 |
-
value: 46.72
|
257 |
-
- type: precision_at_1
|
258 |
-
value: 38.769999999999996
|
259 |
-
- type: precision_at_10
|
260 |
-
value: 9.328
|
261 |
-
- type: precision_at_100
|
262 |
-
value: 1.484
|
263 |
-
- type: precision_at_1000
|
264 |
-
value: 0.196
|
265 |
-
- type: precision_at_3
|
266 |
-
value: 20.649
|
267 |
-
- type: precision_at_5
|
268 |
-
value: 15.25
|
269 |
-
- type: recall_at_1
|
270 |
-
value: 32.257999999999996
|
271 |
-
- type: recall_at_10
|
272 |
-
value: 61.849
|
273 |
-
- type: recall_at_100
|
274 |
-
value: 83.70400000000001
|
275 |
-
- type: recall_at_1000
|
276 |
-
value: 96.344
|
277 |
-
- type: recall_at_3
|
278 |
-
value: 46.037
|
279 |
-
- type: recall_at_5
|
280 |
-
value: 53.724000000000004
|
281 |
-
- task:
|
282 |
-
type: Retrieval
|
283 |
-
dataset:
|
284 |
-
type: BeIR/cqadupstack
|
285 |
-
name: MTEB CQADupstackEnglishRetrieval
|
286 |
-
config: default
|
287 |
-
split: test
|
288 |
-
revision: None
|
289 |
-
metrics:
|
290 |
-
- type: map_at_1
|
291 |
-
value: 32.979
|
292 |
-
- type: map_at_10
|
293 |
-
value: 43.376999999999995
|
294 |
-
- type: map_at_100
|
295 |
-
value: 44.667
|
296 |
-
- type: map_at_1000
|
297 |
-
value: 44.794
|
298 |
-
- type: map_at_3
|
299 |
-
value: 40.461999999999996
|
300 |
-
- type: map_at_5
|
301 |
-
value: 42.138
|
302 |
-
- type: mrr_at_1
|
303 |
-
value: 41.146
|
304 |
-
- type: mrr_at_10
|
305 |
-
value: 49.575
|
306 |
-
- type: mrr_at_100
|
307 |
-
value: 50.187000000000005
|
308 |
-
- type: mrr_at_1000
|
309 |
-
value: 50.231
|
310 |
-
- type: mrr_at_3
|
311 |
-
value: 47.601
|
312 |
-
- type: mrr_at_5
|
313 |
-
value: 48.786
|
314 |
-
- type: ndcg_at_1
|
315 |
-
value: 41.146
|
316 |
-
- type: ndcg_at_10
|
317 |
-
value: 48.957
|
318 |
-
- type: ndcg_at_100
|
319 |
-
value: 53.296
|
320 |
-
- type: ndcg_at_1000
|
321 |
-
value: 55.254000000000005
|
322 |
-
- type: ndcg_at_3
|
323 |
-
value: 45.235
|
324 |
-
- type: ndcg_at_5
|
325 |
-
value: 47.014
|
326 |
-
- type: precision_at_1
|
327 |
-
value: 41.146
|
328 |
-
- type: precision_at_10
|
329 |
-
value: 9.107999999999999
|
330 |
-
- type: precision_at_100
|
331 |
-
value: 1.481
|
332 |
-
- type: precision_at_1000
|
333 |
-
value: 0.193
|
334 |
-
- type: precision_at_3
|
335 |
-
value: 21.783
|
336 |
-
- type: precision_at_5
|
337 |
-
value: 15.274
|
338 |
-
- type: recall_at_1
|
339 |
-
value: 32.979
|
340 |
-
- type: recall_at_10
|
341 |
-
value: 58.167
|
342 |
-
- type: recall_at_100
|
343 |
-
value: 76.374
|
344 |
-
- type: recall_at_1000
|
345 |
-
value: 88.836
|
346 |
-
- type: recall_at_3
|
347 |
-
value: 46.838
|
348 |
-
- type: recall_at_5
|
349 |
-
value: 52.006
|
350 |
-
- task:
|
351 |
-
type: Retrieval
|
352 |
-
dataset:
|
353 |
-
type: BeIR/cqadupstack
|
354 |
-
name: MTEB CQADupstackGamingRetrieval
|
355 |
-
config: default
|
356 |
-
split: test
|
357 |
-
revision: None
|
358 |
-
metrics:
|
359 |
-
- type: map_at_1
|
360 |
-
value: 40.326
|
361 |
-
- type: map_at_10
|
362 |
-
value: 53.468
|
363 |
-
- type: map_at_100
|
364 |
-
value: 54.454
|
365 |
-
- type: map_at_1000
|
366 |
-
value: 54.508
|
367 |
-
- type: map_at_3
|
368 |
-
value: 50.12799999999999
|
369 |
-
- type: map_at_5
|
370 |
-
value: 51.991
|
371 |
-
- type: mrr_at_1
|
372 |
-
value: 46.394999999999996
|
373 |
-
- type: mrr_at_10
|
374 |
-
value: 57.016999999999996
|
375 |
-
- type: mrr_at_100
|
376 |
-
value: 57.67099999999999
|
377 |
-
- type: mrr_at_1000
|
378 |
-
value: 57.699999999999996
|
379 |
-
- type: mrr_at_3
|
380 |
-
value: 54.65
|
381 |
-
- type: mrr_at_5
|
382 |
-
value: 56.101
|
383 |
-
- type: ndcg_at_1
|
384 |
-
value: 46.394999999999996
|
385 |
-
- type: ndcg_at_10
|
386 |
-
value: 59.507
|
387 |
-
- type: ndcg_at_100
|
388 |
-
value: 63.31099999999999
|
389 |
-
- type: ndcg_at_1000
|
390 |
-
value: 64.388
|
391 |
-
- type: ndcg_at_3
|
392 |
-
value: 54.04600000000001
|
393 |
-
- type: ndcg_at_5
|
394 |
-
value: 56.723
|
395 |
-
- type: precision_at_1
|
396 |
-
value: 46.394999999999996
|
397 |
-
- type: precision_at_10
|
398 |
-
value: 9.567
|
399 |
-
- type: precision_at_100
|
400 |
-
value: 1.234
|
401 |
-
- type: precision_at_1000
|
402 |
-
value: 0.13699999999999998
|
403 |
-
- type: precision_at_3
|
404 |
-
value: 24.117
|
405 |
-
- type: precision_at_5
|
406 |
-
value: 16.426
|
407 |
-
- type: recall_at_1
|
408 |
-
value: 40.326
|
409 |
-
- type: recall_at_10
|
410 |
-
value: 73.763
|
411 |
-
- type: recall_at_100
|
412 |
-
value: 89.927
|
413 |
-
- type: recall_at_1000
|
414 |
-
value: 97.509
|
415 |
-
- type: recall_at_3
|
416 |
-
value: 59.34
|
417 |
-
- type: recall_at_5
|
418 |
-
value: 65.915
|
419 |
-
- task:
|
420 |
-
type: Retrieval
|
421 |
-
dataset:
|
422 |
-
type: BeIR/cqadupstack
|
423 |
-
name: MTEB CQADupstackGisRetrieval
|
424 |
-
config: default
|
425 |
-
split: test
|
426 |
-
revision: None
|
427 |
-
metrics:
|
428 |
-
- type: map_at_1
|
429 |
-
value: 26.661
|
430 |
-
- type: map_at_10
|
431 |
-
value: 35.522
|
432 |
-
- type: map_at_100
|
433 |
-
value: 36.619
|
434 |
-
- type: map_at_1000
|
435 |
-
value: 36.693999999999996
|
436 |
-
- type: map_at_3
|
437 |
-
value: 33.154
|
438 |
-
- type: map_at_5
|
439 |
-
value: 34.353
|
440 |
-
- type: mrr_at_1
|
441 |
-
value: 28.362
|
442 |
-
- type: mrr_at_10
|
443 |
-
value: 37.403999999999996
|
444 |
-
- type: mrr_at_100
|
445 |
-
value: 38.374
|
446 |
-
- type: mrr_at_1000
|
447 |
-
value: 38.428000000000004
|
448 |
-
- type: mrr_at_3
|
449 |
-
value: 35.235
|
450 |
-
- type: mrr_at_5
|
451 |
-
value: 36.269
|
452 |
-
- type: ndcg_at_1
|
453 |
-
value: 28.362
|
454 |
-
- type: ndcg_at_10
|
455 |
-
value: 40.431
|
456 |
-
- type: ndcg_at_100
|
457 |
-
value: 45.745999999999995
|
458 |
-
- type: ndcg_at_1000
|
459 |
-
value: 47.493
|
460 |
-
- type: ndcg_at_3
|
461 |
-
value: 35.733
|
462 |
-
- type: ndcg_at_5
|
463 |
-
value: 37.722
|
464 |
-
- type: precision_at_1
|
465 |
-
value: 28.362
|
466 |
-
- type: precision_at_10
|
467 |
-
value: 6.101999999999999
|
468 |
-
- type: precision_at_100
|
469 |
-
value: 0.922
|
470 |
-
- type: precision_at_1000
|
471 |
-
value: 0.11100000000000002
|
472 |
-
- type: precision_at_3
|
473 |
-
value: 15.140999999999998
|
474 |
-
- type: precision_at_5
|
475 |
-
value: 10.305
|
476 |
-
- type: recall_at_1
|
477 |
-
value: 26.661
|
478 |
-
- type: recall_at_10
|
479 |
-
value: 53.675
|
480 |
-
- type: recall_at_100
|
481 |
-
value: 77.891
|
482 |
-
- type: recall_at_1000
|
483 |
-
value: 90.72
|
484 |
-
- type: recall_at_3
|
485 |
-
value: 40.751
|
486 |
-
- type: recall_at_5
|
487 |
-
value: 45.517
|
488 |
-
- task:
|
489 |
-
type: Retrieval
|
490 |
-
dataset:
|
491 |
-
type: BeIR/cqadupstack
|
492 |
-
name: MTEB CQADupstackMathematicaRetrieval
|
493 |
-
config: default
|
494 |
-
split: test
|
495 |
-
revision: None
|
496 |
-
metrics:
|
497 |
-
- type: map_at_1
|
498 |
-
value: 18.886
|
499 |
-
- type: map_at_10
|
500 |
-
value: 27.288
|
501 |
-
- type: map_at_100
|
502 |
-
value: 28.327999999999996
|
503 |
-
- type: map_at_1000
|
504 |
-
value: 28.438999999999997
|
505 |
-
- type: map_at_3
|
506 |
-
value: 24.453
|
507 |
-
- type: map_at_5
|
508 |
-
value: 25.959
|
509 |
-
- type: mrr_at_1
|
510 |
-
value: 23.134
|
511 |
-
- type: mrr_at_10
|
512 |
-
value: 32.004
|
513 |
-
- type: mrr_at_100
|
514 |
-
value: 32.789
|
515 |
-
- type: mrr_at_1000
|
516 |
-
value: 32.857
|
517 |
-
- type: mrr_at_3
|
518 |
-
value: 29.084
|
519 |
-
- type: mrr_at_5
|
520 |
-
value: 30.614
|
521 |
-
- type: ndcg_at_1
|
522 |
-
value: 23.134
|
523 |
-
- type: ndcg_at_10
|
524 |
-
value: 32.852
|
525 |
-
- type: ndcg_at_100
|
526 |
-
value: 37.972
|
527 |
-
- type: ndcg_at_1000
|
528 |
-
value: 40.656
|
529 |
-
- type: ndcg_at_3
|
530 |
-
value: 27.435
|
531 |
-
- type: ndcg_at_5
|
532 |
-
value: 29.823
|
533 |
-
- type: precision_at_1
|
534 |
-
value: 23.134
|
535 |
-
- type: precision_at_10
|
536 |
-
value: 6.032
|
537 |
-
- type: precision_at_100
|
538 |
-
value: 0.9950000000000001
|
539 |
-
- type: precision_at_1000
|
540 |
-
value: 0.136
|
541 |
-
- type: precision_at_3
|
542 |
-
value: 13.017999999999999
|
543 |
-
- type: precision_at_5
|
544 |
-
value: 9.501999999999999
|
545 |
-
- type: recall_at_1
|
546 |
-
value: 18.886
|
547 |
-
- type: recall_at_10
|
548 |
-
value: 45.34
|
549 |
-
- type: recall_at_100
|
550 |
-
value: 67.947
|
551 |
-
- type: recall_at_1000
|
552 |
-
value: 86.924
|
553 |
-
- type: recall_at_3
|
554 |
-
value: 30.535
|
555 |
-
- type: recall_at_5
|
556 |
-
value: 36.451
|
557 |
-
- task:
|
558 |
-
type: Retrieval
|
559 |
-
dataset:
|
560 |
-
type: BeIR/cqadupstack
|
561 |
-
name: MTEB CQADupstackPhysicsRetrieval
|
562 |
-
config: default
|
563 |
-
split: test
|
564 |
-
revision: None
|
565 |
-
metrics:
|
566 |
-
- type: map_at_1
|
567 |
-
value: 28.994999999999997
|
568 |
-
- type: map_at_10
|
569 |
-
value: 40.04
|
570 |
-
- type: map_at_100
|
571 |
-
value: 41.435
|
572 |
-
- type: map_at_1000
|
573 |
-
value: 41.537
|
574 |
-
- type: map_at_3
|
575 |
-
value: 37.091
|
576 |
-
- type: map_at_5
|
577 |
-
value: 38.802
|
578 |
-
- type: mrr_at_1
|
579 |
-
value: 35.034
|
580 |
-
- type: mrr_at_10
|
581 |
-
value: 45.411
|
582 |
-
- type: mrr_at_100
|
583 |
-
value: 46.226
|
584 |
-
- type: mrr_at_1000
|
585 |
-
value: 46.27
|
586 |
-
- type: mrr_at_3
|
587 |
-
value: 43.086
|
588 |
-
- type: mrr_at_5
|
589 |
-
value: 44.452999999999996
|
590 |
-
- type: ndcg_at_1
|
591 |
-
value: 35.034
|
592 |
-
- type: ndcg_at_10
|
593 |
-
value: 46.076
|
594 |
-
- type: ndcg_at_100
|
595 |
-
value: 51.483000000000004
|
596 |
-
- type: ndcg_at_1000
|
597 |
-
value: 53.433
|
598 |
-
- type: ndcg_at_3
|
599 |
-
value: 41.304
|
600 |
-
- type: ndcg_at_5
|
601 |
-
value: 43.641999999999996
|
602 |
-
- type: precision_at_1
|
603 |
-
value: 35.034
|
604 |
-
- type: precision_at_10
|
605 |
-
value: 8.258000000000001
|
606 |
-
- type: precision_at_100
|
607 |
-
value: 1.268
|
608 |
-
- type: precision_at_1000
|
609 |
-
value: 0.161
|
610 |
-
- type: precision_at_3
|
611 |
-
value: 19.57
|
612 |
-
- type: precision_at_5
|
613 |
-
value: 13.782
|
614 |
-
- type: recall_at_1
|
615 |
-
value: 28.994999999999997
|
616 |
-
- type: recall_at_10
|
617 |
-
value: 58.538000000000004
|
618 |
-
- type: recall_at_100
|
619 |
-
value: 80.72399999999999
|
620 |
-
- type: recall_at_1000
|
621 |
-
value: 93.462
|
622 |
-
- type: recall_at_3
|
623 |
-
value: 45.199
|
624 |
-
- type: recall_at_5
|
625 |
-
value: 51.237
|
626 |
-
- task:
|
627 |
-
type: Retrieval
|
628 |
-
dataset:
|
629 |
-
type: BeIR/cqadupstack
|
630 |
-
name: MTEB CQADupstackProgrammersRetrieval
|
631 |
-
config: default
|
632 |
-
split: test
|
633 |
-
revision: None
|
634 |
-
metrics:
|
635 |
-
- type: map_at_1
|
636 |
-
value: 24.795
|
637 |
-
- type: map_at_10
|
638 |
-
value: 34.935
|
639 |
-
- type: map_at_100
|
640 |
-
value: 36.306
|
641 |
-
- type: map_at_1000
|
642 |
-
value: 36.417
|
643 |
-
- type: map_at_3
|
644 |
-
value: 31.831
|
645 |
-
- type: map_at_5
|
646 |
-
value: 33.626
|
647 |
-
- type: mrr_at_1
|
648 |
-
value: 30.479
|
649 |
-
- type: mrr_at_10
|
650 |
-
value: 40.225
|
651 |
-
- type: mrr_at_100
|
652 |
-
value: 41.055
|
653 |
-
- type: mrr_at_1000
|
654 |
-
value: 41.114
|
655 |
-
- type: mrr_at_3
|
656 |
-
value: 37.538
|
657 |
-
- type: mrr_at_5
|
658 |
-
value: 39.073
|
659 |
-
- type: ndcg_at_1
|
660 |
-
value: 30.479
|
661 |
-
- type: ndcg_at_10
|
662 |
-
value: 40.949999999999996
|
663 |
-
- type: ndcg_at_100
|
664 |
-
value: 46.525
|
665 |
-
- type: ndcg_at_1000
|
666 |
-
value: 48.892
|
667 |
-
- type: ndcg_at_3
|
668 |
-
value: 35.79
|
669 |
-
- type: ndcg_at_5
|
670 |
-
value: 38.237
|
671 |
-
- type: precision_at_1
|
672 |
-
value: 30.479
|
673 |
-
- type: precision_at_10
|
674 |
-
value: 7.6259999999999994
|
675 |
-
- type: precision_at_100
|
676 |
-
value: 1.203
|
677 |
-
- type: precision_at_1000
|
678 |
-
value: 0.157
|
679 |
-
- type: precision_at_3
|
680 |
-
value: 17.199
|
681 |
-
- type: precision_at_5
|
682 |
-
value: 12.466000000000001
|
683 |
-
- type: recall_at_1
|
684 |
-
value: 24.795
|
685 |
-
- type: recall_at_10
|
686 |
-
value: 53.421
|
687 |
-
- type: recall_at_100
|
688 |
-
value: 77.189
|
689 |
-
- type: recall_at_1000
|
690 |
-
value: 93.407
|
691 |
-
- type: recall_at_3
|
692 |
-
value: 39.051
|
693 |
-
- type: recall_at_5
|
694 |
-
value: 45.462
|
695 |
-
- task:
|
696 |
-
type: Retrieval
|
697 |
-
dataset:
|
698 |
-
type: BeIR/cqadupstack
|
699 |
-
name: MTEB CQADupstackRetrieval
|
700 |
-
config: default
|
701 |
-
split: test
|
702 |
-
revision: None
|
703 |
-
metrics:
|
704 |
-
- type: map_at_1
|
705 |
-
value: 26.853499999999997
|
706 |
-
- type: map_at_10
|
707 |
-
value: 36.20433333333333
|
708 |
-
- type: map_at_100
|
709 |
-
value: 37.40391666666667
|
710 |
-
- type: map_at_1000
|
711 |
-
value: 37.515
|
712 |
-
- type: map_at_3
|
713 |
-
value: 33.39975
|
714 |
-
- type: map_at_5
|
715 |
-
value: 34.9665
|
716 |
-
- type: mrr_at_1
|
717 |
-
value: 31.62666666666667
|
718 |
-
- type: mrr_at_10
|
719 |
-
value: 40.436749999999996
|
720 |
-
- type: mrr_at_100
|
721 |
-
value: 41.260333333333335
|
722 |
-
- type: mrr_at_1000
|
723 |
-
value: 41.31525
|
724 |
-
- type: mrr_at_3
|
725 |
-
value: 38.06733333333332
|
726 |
-
- type: mrr_at_5
|
727 |
-
value: 39.41541666666667
|
728 |
-
- type: ndcg_at_1
|
729 |
-
value: 31.62666666666667
|
730 |
-
- type: ndcg_at_10
|
731 |
-
value: 41.63341666666667
|
732 |
-
- type: ndcg_at_100
|
733 |
-
value: 46.704166666666666
|
734 |
-
- type: ndcg_at_1000
|
735 |
-
value: 48.88483333333335
|
736 |
-
- type: ndcg_at_3
|
737 |
-
value: 36.896
|
738 |
-
- type: ndcg_at_5
|
739 |
-
value: 39.11891666666667
|
740 |
-
- type: precision_at_1
|
741 |
-
value: 31.62666666666667
|
742 |
-
- type: precision_at_10
|
743 |
-
value: 7.241083333333333
|
744 |
-
- type: precision_at_100
|
745 |
-
value: 1.1488333333333334
|
746 |
-
- type: precision_at_1000
|
747 |
-
value: 0.15250000000000002
|
748 |
-
- type: precision_at_3
|
749 |
-
value: 16.908333333333335
|
750 |
-
- type: precision_at_5
|
751 |
-
value: 11.942833333333333
|
752 |
-
- type: recall_at_1
|
753 |
-
value: 26.853499999999997
|
754 |
-
- type: recall_at_10
|
755 |
-
value: 53.461333333333336
|
756 |
-
- type: recall_at_100
|
757 |
-
value: 75.63633333333333
|
758 |
-
- type: recall_at_1000
|
759 |
-
value: 90.67016666666666
|
760 |
-
- type: recall_at_3
|
761 |
-
value: 40.24241666666667
|
762 |
-
- type: recall_at_5
|
763 |
-
value: 45.98608333333333
|
764 |
-
- task:
|
765 |
-
type: Retrieval
|
766 |
-
dataset:
|
767 |
-
type: BeIR/cqadupstack
|
768 |
-
name: MTEB CQADupstackStatsRetrieval
|
769 |
-
config: default
|
770 |
-
split: test
|
771 |
-
revision: None
|
772 |
-
metrics:
|
773 |
-
- type: map_at_1
|
774 |
-
value: 25.241999999999997
|
775 |
-
- type: map_at_10
|
776 |
-
value: 31.863999999999997
|
777 |
-
- type: map_at_100
|
778 |
-
value: 32.835
|
779 |
-
- type: map_at_1000
|
780 |
-
value: 32.928000000000004
|
781 |
-
- type: map_at_3
|
782 |
-
value: 29.694
|
783 |
-
- type: map_at_5
|
784 |
-
value: 30.978
|
785 |
-
- type: mrr_at_1
|
786 |
-
value: 28.374
|
787 |
-
- type: mrr_at_10
|
788 |
-
value: 34.814
|
789 |
-
- type: mrr_at_100
|
790 |
-
value: 35.596
|
791 |
-
- type: mrr_at_1000
|
792 |
-
value: 35.666
|
793 |
-
- type: mrr_at_3
|
794 |
-
value: 32.745000000000005
|
795 |
-
- type: mrr_at_5
|
796 |
-
value: 34.049
|
797 |
-
- type: ndcg_at_1
|
798 |
-
value: 28.374
|
799 |
-
- type: ndcg_at_10
|
800 |
-
value: 35.969
|
801 |
-
- type: ndcg_at_100
|
802 |
-
value: 40.708
|
803 |
-
- type: ndcg_at_1000
|
804 |
-
value: 43.08
|
805 |
-
- type: ndcg_at_3
|
806 |
-
value: 31.968999999999998
|
807 |
-
- type: ndcg_at_5
|
808 |
-
value: 34.069
|
809 |
-
- type: precision_at_1
|
810 |
-
value: 28.374
|
811 |
-
- type: precision_at_10
|
812 |
-
value: 5.583
|
813 |
-
- type: precision_at_100
|
814 |
-
value: 0.8630000000000001
|
815 |
-
- type: precision_at_1000
|
816 |
-
value: 0.11299999999999999
|
817 |
-
- type: precision_at_3
|
818 |
-
value: 13.547999999999998
|
819 |
-
- type: precision_at_5
|
820 |
-
value: 9.447999999999999
|
821 |
-
- type: recall_at_1
|
822 |
-
value: 25.241999999999997
|
823 |
-
- type: recall_at_10
|
824 |
-
value: 45.711
|
825 |
-
- type: recall_at_100
|
826 |
-
value: 67.482
|
827 |
-
- type: recall_at_1000
|
828 |
-
value: 85.13300000000001
|
829 |
-
- type: recall_at_3
|
830 |
-
value: 34.622
|
831 |
-
- type: recall_at_5
|
832 |
-
value: 40.043
|
833 |
-
- task:
|
834 |
-
type: Retrieval
|
835 |
-
dataset:
|
836 |
-
type: BeIR/cqadupstack
|
837 |
-
name: MTEB CQADupstackTexRetrieval
|
838 |
-
config: default
|
839 |
-
split: test
|
840 |
-
revision: None
|
841 |
-
metrics:
|
842 |
-
- type: map_at_1
|
843 |
-
value: 17.488999999999997
|
844 |
-
- type: map_at_10
|
845 |
-
value: 25.142999999999997
|
846 |
-
- type: map_at_100
|
847 |
-
value: 26.244
|
848 |
-
- type: map_at_1000
|
849 |
-
value: 26.363999999999997
|
850 |
-
- type: map_at_3
|
851 |
-
value: 22.654
|
852 |
-
- type: map_at_5
|
853 |
-
value: 24.017
|
854 |
-
- type: mrr_at_1
|
855 |
-
value: 21.198
|
856 |
-
- type: mrr_at_10
|
857 |
-
value: 28.903000000000002
|
858 |
-
- type: mrr_at_100
|
859 |
-
value: 29.860999999999997
|
860 |
-
- type: mrr_at_1000
|
861 |
-
value: 29.934
|
862 |
-
- type: mrr_at_3
|
863 |
-
value: 26.634999999999998
|
864 |
-
- type: mrr_at_5
|
865 |
-
value: 27.903
|
866 |
-
- type: ndcg_at_1
|
867 |
-
value: 21.198
|
868 |
-
- type: ndcg_at_10
|
869 |
-
value: 29.982999999999997
|
870 |
-
- type: ndcg_at_100
|
871 |
-
value: 35.275
|
872 |
-
- type: ndcg_at_1000
|
873 |
-
value: 38.074000000000005
|
874 |
-
- type: ndcg_at_3
|
875 |
-
value: 25.502999999999997
|
876 |
-
- type: ndcg_at_5
|
877 |
-
value: 27.557
|
878 |
-
- type: precision_at_1
|
879 |
-
value: 21.198
|
880 |
-
- type: precision_at_10
|
881 |
-
value: 5.502
|
882 |
-
- type: precision_at_100
|
883 |
-
value: 0.942
|
884 |
-
- type: precision_at_1000
|
885 |
-
value: 0.136
|
886 |
-
- type: precision_at_3
|
887 |
-
value: 12.044
|
888 |
-
- type: precision_at_5
|
889 |
-
value: 8.782
|
890 |
-
- type: recall_at_1
|
891 |
-
value: 17.488999999999997
|
892 |
-
- type: recall_at_10
|
893 |
-
value: 40.821000000000005
|
894 |
-
- type: recall_at_100
|
895 |
-
value: 64.567
|
896 |
-
- type: recall_at_1000
|
897 |
-
value: 84.452
|
898 |
-
- type: recall_at_3
|
899 |
-
value: 28.351
|
900 |
-
- type: recall_at_5
|
901 |
-
value: 33.645
|
902 |
-
- task:
|
903 |
-
type: Retrieval
|
904 |
-
dataset:
|
905 |
-
type: BeIR/cqadupstack
|
906 |
-
name: MTEB CQADupstackUnixRetrieval
|
907 |
-
config: default
|
908 |
-
split: test
|
909 |
-
revision: None
|
910 |
-
metrics:
|
911 |
-
- type: map_at_1
|
912 |
-
value: 27.066000000000003
|
913 |
-
- type: map_at_10
|
914 |
-
value: 36.134
|
915 |
-
- type: map_at_100
|
916 |
-
value: 37.285000000000004
|
917 |
-
- type: map_at_1000
|
918 |
-
value: 37.389
|
919 |
-
- type: map_at_3
|
920 |
-
value: 33.522999999999996
|
921 |
-
- type: map_at_5
|
922 |
-
value: 34.905
|
923 |
-
- type: mrr_at_1
|
924 |
-
value: 31.436999999999998
|
925 |
-
- type: mrr_at_10
|
926 |
-
value: 40.225
|
927 |
-
- type: mrr_at_100
|
928 |
-
value: 41.079
|
929 |
-
- type: mrr_at_1000
|
930 |
-
value: 41.138000000000005
|
931 |
-
- type: mrr_at_3
|
932 |
-
value: 38.074999999999996
|
933 |
-
- type: mrr_at_5
|
934 |
-
value: 39.190000000000005
|
935 |
-
- type: ndcg_at_1
|
936 |
-
value: 31.436999999999998
|
937 |
-
- type: ndcg_at_10
|
938 |
-
value: 41.494
|
939 |
-
- type: ndcg_at_100
|
940 |
-
value: 46.678999999999995
|
941 |
-
- type: ndcg_at_1000
|
942 |
-
value: 48.964
|
943 |
-
- type: ndcg_at_3
|
944 |
-
value: 36.828
|
945 |
-
- type: ndcg_at_5
|
946 |
-
value: 38.789
|
947 |
-
- type: precision_at_1
|
948 |
-
value: 31.436999999999998
|
949 |
-
- type: precision_at_10
|
950 |
-
value: 6.931
|
951 |
-
- type: precision_at_100
|
952 |
-
value: 1.072
|
953 |
-
- type: precision_at_1000
|
954 |
-
value: 0.13799999999999998
|
955 |
-
- type: precision_at_3
|
956 |
-
value: 16.729
|
957 |
-
- type: precision_at_5
|
958 |
-
value: 11.567
|
959 |
-
- type: recall_at_1
|
960 |
-
value: 27.066000000000003
|
961 |
-
- type: recall_at_10
|
962 |
-
value: 53.705000000000005
|
963 |
-
- type: recall_at_100
|
964 |
-
value: 75.968
|
965 |
-
- type: recall_at_1000
|
966 |
-
value: 91.937
|
967 |
-
- type: recall_at_3
|
968 |
-
value: 40.865
|
969 |
-
- type: recall_at_5
|
970 |
-
value: 45.739999999999995
|
971 |
-
- task:
|
972 |
-
type: Retrieval
|
973 |
-
dataset:
|
974 |
-
type: BeIR/cqadupstack
|
975 |
-
name: MTEB CQADupstackWebmastersRetrieval
|
976 |
-
config: default
|
977 |
-
split: test
|
978 |
-
revision: None
|
979 |
-
metrics:
|
980 |
-
- type: map_at_1
|
981 |
-
value: 24.979000000000003
|
982 |
-
- type: map_at_10
|
983 |
-
value: 32.799
|
984 |
-
- type: map_at_100
|
985 |
-
value: 34.508
|
986 |
-
- type: map_at_1000
|
987 |
-
value: 34.719
|
988 |
-
- type: map_at_3
|
989 |
-
value: 29.947000000000003
|
990 |
-
- type: map_at_5
|
991 |
-
value: 31.584
|
992 |
-
- type: mrr_at_1
|
993 |
-
value: 30.237000000000002
|
994 |
-
- type: mrr_at_10
|
995 |
-
value: 37.651
|
996 |
-
- type: mrr_at_100
|
997 |
-
value: 38.805
|
998 |
-
- type: mrr_at_1000
|
999 |
-
value: 38.851
|
1000 |
-
- type: mrr_at_3
|
1001 |
-
value: 35.046
|
1002 |
-
- type: mrr_at_5
|
1003 |
-
value: 36.548
|
1004 |
-
- type: ndcg_at_1
|
1005 |
-
value: 30.237000000000002
|
1006 |
-
- type: ndcg_at_10
|
1007 |
-
value: 38.356
|
1008 |
-
- type: ndcg_at_100
|
1009 |
-
value: 44.906
|
1010 |
-
- type: ndcg_at_1000
|
1011 |
-
value: 47.299
|
1012 |
-
- type: ndcg_at_3
|
1013 |
-
value: 33.717999999999996
|
1014 |
-
- type: ndcg_at_5
|
1015 |
-
value: 35.946
|
1016 |
-
- type: precision_at_1
|
1017 |
-
value: 30.237000000000002
|
1018 |
-
- type: precision_at_10
|
1019 |
-
value: 7.292
|
1020 |
-
- type: precision_at_100
|
1021 |
-
value: 1.496
|
1022 |
-
- type: precision_at_1000
|
1023 |
-
value: 0.23600000000000002
|
1024 |
-
- type: precision_at_3
|
1025 |
-
value: 15.547
|
1026 |
-
- type: precision_at_5
|
1027 |
-
value: 11.344
|
1028 |
-
- type: recall_at_1
|
1029 |
-
value: 24.979000000000003
|
1030 |
-
- type: recall_at_10
|
1031 |
-
value: 48.624
|
1032 |
-
- type: recall_at_100
|
1033 |
-
value: 77.932
|
1034 |
-
- type: recall_at_1000
|
1035 |
-
value: 92.66499999999999
|
1036 |
-
- type: recall_at_3
|
1037 |
-
value: 35.217
|
1038 |
-
- type: recall_at_5
|
1039 |
-
value: 41.394
|
1040 |
-
- task:
|
1041 |
-
type: Retrieval
|
1042 |
-
dataset:
|
1043 |
-
type: BeIR/cqadupstack
|
1044 |
-
name: MTEB CQADupstackWordpressRetrieval
|
1045 |
-
config: default
|
1046 |
-
split: test
|
1047 |
-
revision: None
|
1048 |
-
metrics:
|
1049 |
-
- type: map_at_1
|
1050 |
-
value: 22.566
|
1051 |
-
- type: map_at_10
|
1052 |
-
value: 30.945
|
1053 |
-
- type: map_at_100
|
1054 |
-
value: 31.759999999999998
|
1055 |
-
- type: map_at_1000
|
1056 |
-
value: 31.855
|
1057 |
-
- type: map_at_3
|
1058 |
-
value: 28.64
|
1059 |
-
- type: map_at_5
|
1060 |
-
value: 29.787000000000003
|
1061 |
-
- type: mrr_at_1
|
1062 |
-
value: 24.954
|
1063 |
-
- type: mrr_at_10
|
1064 |
-
value: 33.311
|
1065 |
-
- type: mrr_at_100
|
1066 |
-
value: 34.050000000000004
|
1067 |
-
- type: mrr_at_1000
|
1068 |
-
value: 34.117999999999995
|
1069 |
-
- type: mrr_at_3
|
1070 |
-
value: 31.238
|
1071 |
-
- type: mrr_at_5
|
1072 |
-
value: 32.329
|
1073 |
-
- type: ndcg_at_1
|
1074 |
-
value: 24.954
|
1075 |
-
- type: ndcg_at_10
|
1076 |
-
value: 35.676
|
1077 |
-
- type: ndcg_at_100
|
1078 |
-
value: 39.931
|
1079 |
-
- type: ndcg_at_1000
|
1080 |
-
value: 42.43
|
1081 |
-
- type: ndcg_at_3
|
1082 |
-
value: 31.365
|
1083 |
-
- type: ndcg_at_5
|
1084 |
-
value: 33.184999999999995
|
1085 |
-
- type: precision_at_1
|
1086 |
-
value: 24.954
|
1087 |
-
- type: precision_at_10
|
1088 |
-
value: 5.564
|
1089 |
-
- type: precision_at_100
|
1090 |
-
value: 0.826
|
1091 |
-
- type: precision_at_1000
|
1092 |
-
value: 0.116
|
1093 |
-
- type: precision_at_3
|
1094 |
-
value: 13.555
|
1095 |
-
- type: precision_at_5
|
1096 |
-
value: 9.168
|
1097 |
-
- type: recall_at_1
|
1098 |
-
value: 22.566
|
1099 |
-
- type: recall_at_10
|
1100 |
-
value: 47.922
|
1101 |
-
- type: recall_at_100
|
1102 |
-
value: 67.931
|
1103 |
-
- type: recall_at_1000
|
1104 |
-
value: 86.653
|
1105 |
-
- type: recall_at_3
|
1106 |
-
value: 36.103
|
1107 |
-
- type: recall_at_5
|
1108 |
-
value: 40.699000000000005
|
1109 |
-
- task:
|
1110 |
-
type: Retrieval
|
1111 |
-
dataset:
|
1112 |
-
type: climate-fever
|
1113 |
-
name: MTEB ClimateFEVER
|
1114 |
-
config: default
|
1115 |
-
split: test
|
1116 |
-
revision: None
|
1117 |
-
metrics:
|
1118 |
-
- type: map_at_1
|
1119 |
-
value: 16.950000000000003
|
1120 |
-
- type: map_at_10
|
1121 |
-
value: 28.612
|
1122 |
-
- type: map_at_100
|
1123 |
-
value: 30.476999999999997
|
1124 |
-
- type: map_at_1000
|
1125 |
-
value: 30.674
|
1126 |
-
- type: map_at_3
|
1127 |
-
value: 24.262
|
1128 |
-
- type: map_at_5
|
1129 |
-
value: 26.554
|
1130 |
-
- type: mrr_at_1
|
1131 |
-
value: 38.241
|
1132 |
-
- type: mrr_at_10
|
1133 |
-
value: 50.43
|
1134 |
-
- type: mrr_at_100
|
1135 |
-
value: 51.059
|
1136 |
-
- type: mrr_at_1000
|
1137 |
-
value: 51.090999999999994
|
1138 |
-
- type: mrr_at_3
|
1139 |
-
value: 47.514
|
1140 |
-
- type: mrr_at_5
|
1141 |
-
value: 49.246
|
1142 |
-
- type: ndcg_at_1
|
1143 |
-
value: 38.241
|
1144 |
-
- type: ndcg_at_10
|
1145 |
-
value: 38.218
|
1146 |
-
- type: ndcg_at_100
|
1147 |
-
value: 45.003
|
1148 |
-
- type: ndcg_at_1000
|
1149 |
-
value: 48.269
|
1150 |
-
- type: ndcg_at_3
|
1151 |
-
value: 32.568000000000005
|
1152 |
-
- type: ndcg_at_5
|
1153 |
-
value: 34.400999999999996
|
1154 |
-
- type: precision_at_1
|
1155 |
-
value: 38.241
|
1156 |
-
- type: precision_at_10
|
1157 |
-
value: 11.674
|
1158 |
-
- type: precision_at_100
|
1159 |
-
value: 1.913
|
1160 |
-
- type: precision_at_1000
|
1161 |
-
value: 0.252
|
1162 |
-
- type: precision_at_3
|
1163 |
-
value: 24.387
|
1164 |
-
- type: precision_at_5
|
1165 |
-
value: 18.163
|
1166 |
-
- type: recall_at_1
|
1167 |
-
value: 16.950000000000003
|
1168 |
-
- type: recall_at_10
|
1169 |
-
value: 43.769000000000005
|
1170 |
-
- type: recall_at_100
|
1171 |
-
value: 66.875
|
1172 |
-
- type: recall_at_1000
|
1173 |
-
value: 84.92699999999999
|
1174 |
-
- type: recall_at_3
|
1175 |
-
value: 29.353
|
1176 |
-
- type: recall_at_5
|
1177 |
-
value: 35.467
|
1178 |
-
- task:
|
1179 |
-
type: Retrieval
|
1180 |
-
dataset:
|
1181 |
-
type: dbpedia-entity
|
1182 |
-
name: MTEB DBPedia
|
1183 |
-
config: default
|
1184 |
-
split: test
|
1185 |
-
revision: None
|
1186 |
-
metrics:
|
1187 |
-
- type: map_at_1
|
1188 |
-
value: 9.276
|
1189 |
-
- type: map_at_10
|
1190 |
-
value: 20.848
|
1191 |
-
- type: map_at_100
|
1192 |
-
value: 29.804000000000002
|
1193 |
-
- type: map_at_1000
|
1194 |
-
value: 31.398
|
1195 |
-
- type: map_at_3
|
1196 |
-
value: 14.886
|
1197 |
-
- type: map_at_5
|
1198 |
-
value: 17.516000000000002
|
1199 |
-
- type: mrr_at_1
|
1200 |
-
value: 71
|
1201 |
-
- type: mrr_at_10
|
1202 |
-
value: 78.724
|
1203 |
-
- type: mrr_at_100
|
1204 |
-
value: 78.976
|
1205 |
-
- type: mrr_at_1000
|
1206 |
-
value: 78.986
|
1207 |
-
- type: mrr_at_3
|
1208 |
-
value: 77.333
|
1209 |
-
- type: mrr_at_5
|
1210 |
-
value: 78.021
|
1211 |
-
- type: ndcg_at_1
|
1212 |
-
value: 57.875
|
1213 |
-
- type: ndcg_at_10
|
1214 |
-
value: 43.855
|
1215 |
-
- type: ndcg_at_100
|
1216 |
-
value: 48.99
|
1217 |
-
- type: ndcg_at_1000
|
1218 |
-
value: 56.141
|
1219 |
-
- type: ndcg_at_3
|
1220 |
-
value: 48.914
|
1221 |
-
- type: ndcg_at_5
|
1222 |
-
value: 45.961
|
1223 |
-
- type: precision_at_1
|
1224 |
-
value: 71
|
1225 |
-
- type: precision_at_10
|
1226 |
-
value: 34.575
|
1227 |
-
- type: precision_at_100
|
1228 |
-
value: 11.182
|
1229 |
-
- type: precision_at_1000
|
1230 |
-
value: 2.044
|
1231 |
-
- type: precision_at_3
|
1232 |
-
value: 52.5
|
1233 |
-
- type: precision_at_5
|
1234 |
-
value: 44.2
|
1235 |
-
- type: recall_at_1
|
1236 |
-
value: 9.276
|
1237 |
-
- type: recall_at_10
|
1238 |
-
value: 26.501
|
1239 |
-
- type: recall_at_100
|
1240 |
-
value: 55.72899999999999
|
1241 |
-
- type: recall_at_1000
|
1242 |
-
value: 78.532
|
1243 |
-
- type: recall_at_3
|
1244 |
-
value: 16.365
|
1245 |
-
- type: recall_at_5
|
1246 |
-
value: 20.154
|
1247 |
-
- task:
|
1248 |
-
type: Classification
|
1249 |
-
dataset:
|
1250 |
-
type: mteb/emotion
|
1251 |
-
name: MTEB EmotionClassification
|
1252 |
-
config: default
|
1253 |
-
split: test
|
1254 |
-
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1255 |
-
metrics:
|
1256 |
-
- type: accuracy
|
1257 |
-
value: 52.71
|
1258 |
-
- type: f1
|
1259 |
-
value: 47.74801556489574
|
1260 |
-
- task:
|
1261 |
-
type: Retrieval
|
1262 |
-
dataset:
|
1263 |
-
type: fever
|
1264 |
-
name: MTEB FEVER
|
1265 |
-
config: default
|
1266 |
-
split: test
|
1267 |
-
revision: None
|
1268 |
-
metrics:
|
1269 |
-
- type: map_at_1
|
1270 |
-
value: 73.405
|
1271 |
-
- type: map_at_10
|
1272 |
-
value: 82.822
|
1273 |
-
- type: map_at_100
|
1274 |
-
value: 83.042
|
1275 |
-
- type: map_at_1000
|
1276 |
-
value: 83.055
|
1277 |
-
- type: map_at_3
|
1278 |
-
value: 81.65299999999999
|
1279 |
-
- type: map_at_5
|
1280 |
-
value: 82.431
|
1281 |
-
- type: mrr_at_1
|
1282 |
-
value: 79.178
|
1283 |
-
- type: mrr_at_10
|
1284 |
-
value: 87.02
|
1285 |
-
- type: mrr_at_100
|
1286 |
-
value: 87.095
|
1287 |
-
- type: mrr_at_1000
|
1288 |
-
value: 87.09700000000001
|
1289 |
-
- type: mrr_at_3
|
1290 |
-
value: 86.309
|
1291 |
-
- type: mrr_at_5
|
1292 |
-
value: 86.824
|
1293 |
-
- type: ndcg_at_1
|
1294 |
-
value: 79.178
|
1295 |
-
- type: ndcg_at_10
|
1296 |
-
value: 86.72
|
1297 |
-
- type: ndcg_at_100
|
1298 |
-
value: 87.457
|
1299 |
-
- type: ndcg_at_1000
|
1300 |
-
value: 87.691
|
1301 |
-
- type: ndcg_at_3
|
1302 |
-
value: 84.974
|
1303 |
-
- type: ndcg_at_5
|
1304 |
-
value: 86.032
|
1305 |
-
- type: precision_at_1
|
1306 |
-
value: 79.178
|
1307 |
-
- type: precision_at_10
|
1308 |
-
value: 10.548
|
1309 |
-
- type: precision_at_100
|
1310 |
-
value: 1.113
|
1311 |
-
- type: precision_at_1000
|
1312 |
-
value: 0.11499999999999999
|
1313 |
-
- type: precision_at_3
|
1314 |
-
value: 32.848
|
1315 |
-
- type: precision_at_5
|
1316 |
-
value: 20.45
|
1317 |
-
- type: recall_at_1
|
1318 |
-
value: 73.405
|
1319 |
-
- type: recall_at_10
|
1320 |
-
value: 94.39699999999999
|
1321 |
-
- type: recall_at_100
|
1322 |
-
value: 97.219
|
1323 |
-
- type: recall_at_1000
|
1324 |
-
value: 98.675
|
1325 |
-
- type: recall_at_3
|
1326 |
-
value: 89.679
|
1327 |
-
- type: recall_at_5
|
1328 |
-
value: 92.392
|
1329 |
-
- task:
|
1330 |
-
type: Retrieval
|
1331 |
-
dataset:
|
1332 |
-
type: fiqa
|
1333 |
-
name: MTEB FiQA2018
|
1334 |
-
config: default
|
1335 |
-
split: test
|
1336 |
-
revision: None
|
1337 |
-
metrics:
|
1338 |
-
- type: map_at_1
|
1339 |
-
value: 22.651
|
1340 |
-
- type: map_at_10
|
1341 |
-
value: 36.886
|
1342 |
-
- type: map_at_100
|
1343 |
-
value: 38.811
|
1344 |
-
- type: map_at_1000
|
1345 |
-
value: 38.981
|
1346 |
-
- type: map_at_3
|
1347 |
-
value: 32.538
|
1348 |
-
- type: map_at_5
|
1349 |
-
value: 34.763
|
1350 |
-
- type: mrr_at_1
|
1351 |
-
value: 44.444
|
1352 |
-
- type: mrr_at_10
|
1353 |
-
value: 53.168000000000006
|
1354 |
-
- type: mrr_at_100
|
1355 |
-
value: 53.839000000000006
|
1356 |
-
- type: mrr_at_1000
|
1357 |
-
value: 53.869
|
1358 |
-
- type: mrr_at_3
|
1359 |
-
value: 50.54
|
1360 |
-
- type: mrr_at_5
|
1361 |
-
value: 52.068000000000005
|
1362 |
-
- type: ndcg_at_1
|
1363 |
-
value: 44.444
|
1364 |
-
- type: ndcg_at_10
|
1365 |
-
value: 44.994
|
1366 |
-
- type: ndcg_at_100
|
1367 |
-
value: 51.599
|
1368 |
-
- type: ndcg_at_1000
|
1369 |
-
value: 54.339999999999996
|
1370 |
-
- type: ndcg_at_3
|
1371 |
-
value: 41.372
|
1372 |
-
- type: ndcg_at_5
|
1373 |
-
value: 42.149
|
1374 |
-
- type: precision_at_1
|
1375 |
-
value: 44.444
|
1376 |
-
- type: precision_at_10
|
1377 |
-
value: 12.407
|
1378 |
-
- type: precision_at_100
|
1379 |
-
value: 1.9269999999999998
|
1380 |
-
- type: precision_at_1000
|
1381 |
-
value: 0.242
|
1382 |
-
- type: precision_at_3
|
1383 |
-
value: 27.726
|
1384 |
-
- type: precision_at_5
|
1385 |
-
value: 19.814999999999998
|
1386 |
-
- type: recall_at_1
|
1387 |
-
value: 22.651
|
1388 |
-
- type: recall_at_10
|
1389 |
-
value: 52.075
|
1390 |
-
- type: recall_at_100
|
1391 |
-
value: 76.51400000000001
|
1392 |
-
- type: recall_at_1000
|
1393 |
-
value: 92.852
|
1394 |
-
- type: recall_at_3
|
1395 |
-
value: 37.236000000000004
|
1396 |
-
- type: recall_at_5
|
1397 |
-
value: 43.175999999999995
|
1398 |
-
- task:
|
1399 |
-
type: Retrieval
|
1400 |
-
dataset:
|
1401 |
-
type: hotpotqa
|
1402 |
-
name: MTEB HotpotQA
|
1403 |
-
config: default
|
1404 |
-
split: test
|
1405 |
-
revision: None
|
1406 |
-
metrics:
|
1407 |
-
- type: map_at_1
|
1408 |
-
value: 40.777
|
1409 |
-
- type: map_at_10
|
1410 |
-
value: 66.79899999999999
|
1411 |
-
- type: map_at_100
|
1412 |
-
value: 67.65299999999999
|
1413 |
-
- type: map_at_1000
|
1414 |
-
value: 67.706
|
1415 |
-
- type: map_at_3
|
1416 |
-
value: 63.352
|
1417 |
-
- type: map_at_5
|
1418 |
-
value: 65.52900000000001
|
1419 |
-
- type: mrr_at_1
|
1420 |
-
value: 81.553
|
1421 |
-
- type: mrr_at_10
|
1422 |
-
value: 86.983
|
1423 |
-
- type: mrr_at_100
|
1424 |
-
value: 87.132
|
1425 |
-
- type: mrr_at_1000
|
1426 |
-
value: 87.136
|
1427 |
-
- type: mrr_at_3
|
1428 |
-
value: 86.156
|
1429 |
-
- type: mrr_at_5
|
1430 |
-
value: 86.726
|
1431 |
-
- type: ndcg_at_1
|
1432 |
-
value: 81.553
|
1433 |
-
- type: ndcg_at_10
|
1434 |
-
value: 74.64
|
1435 |
-
- type: ndcg_at_100
|
1436 |
-
value: 77.459
|
1437 |
-
- type: ndcg_at_1000
|
1438 |
-
value: 78.43
|
1439 |
-
- type: ndcg_at_3
|
1440 |
-
value: 69.878
|
1441 |
-
- type: ndcg_at_5
|
1442 |
-
value: 72.59400000000001
|
1443 |
-
- type: precision_at_1
|
1444 |
-
value: 81.553
|
1445 |
-
- type: precision_at_10
|
1446 |
-
value: 15.654000000000002
|
1447 |
-
- type: precision_at_100
|
1448 |
-
value: 1.783
|
1449 |
-
- type: precision_at_1000
|
1450 |
-
value: 0.191
|
1451 |
-
- type: precision_at_3
|
1452 |
-
value: 45.199
|
1453 |
-
- type: precision_at_5
|
1454 |
-
value: 29.267
|
1455 |
-
- type: recall_at_1
|
1456 |
-
value: 40.777
|
1457 |
-
- type: recall_at_10
|
1458 |
-
value: 78.271
|
1459 |
-
- type: recall_at_100
|
1460 |
-
value: 89.129
|
1461 |
-
- type: recall_at_1000
|
1462 |
-
value: 95.49
|
1463 |
-
- type: recall_at_3
|
1464 |
-
value: 67.79899999999999
|
1465 |
-
- type: recall_at_5
|
1466 |
-
value: 73.167
|
1467 |
-
- task:
|
1468 |
-
type: Classification
|
1469 |
-
dataset:
|
1470 |
-
type: mteb/imdb
|
1471 |
-
name: MTEB ImdbClassification
|
1472 |
-
config: default
|
1473 |
-
split: test
|
1474 |
-
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1475 |
-
metrics:
|
1476 |
-
- type: accuracy
|
1477 |
-
value: 93.5064
|
1478 |
-
- type: ap
|
1479 |
-
value: 90.25495114444111
|
1480 |
-
- type: f1
|
1481 |
-
value: 93.5012434973381
|
1482 |
-
- task:
|
1483 |
-
type: Retrieval
|
1484 |
-
dataset:
|
1485 |
-
type: msmarco
|
1486 |
-
name: MTEB MSMARCO
|
1487 |
-
config: default
|
1488 |
-
split: dev
|
1489 |
-
revision: None
|
1490 |
-
metrics:
|
1491 |
-
- type: map_at_1
|
1492 |
-
value: 23.301
|
1493 |
-
- type: map_at_10
|
1494 |
-
value: 35.657
|
1495 |
-
- type: map_at_100
|
1496 |
-
value: 36.797000000000004
|
1497 |
-
- type: map_at_1000
|
1498 |
-
value: 36.844
|
1499 |
-
- type: map_at_3
|
1500 |
-
value: 31.743
|
1501 |
-
- type: map_at_5
|
1502 |
-
value: 34.003
|
1503 |
-
- type: mrr_at_1
|
1504 |
-
value: 23.854
|
1505 |
-
- type: mrr_at_10
|
1506 |
-
value: 36.242999999999995
|
1507 |
-
- type: mrr_at_100
|
1508 |
-
value: 37.32
|
1509 |
-
- type: mrr_at_1000
|
1510 |
-
value: 37.361
|
1511 |
-
- type: mrr_at_3
|
1512 |
-
value: 32.4
|
1513 |
-
- type: mrr_at_5
|
1514 |
-
value: 34.634
|
1515 |
-
- type: ndcg_at_1
|
1516 |
-
value: 23.868000000000002
|
1517 |
-
- type: ndcg_at_10
|
1518 |
-
value: 42.589
|
1519 |
-
- type: ndcg_at_100
|
1520 |
-
value: 48.031
|
1521 |
-
- type: ndcg_at_1000
|
1522 |
-
value: 49.189
|
1523 |
-
- type: ndcg_at_3
|
1524 |
-
value: 34.649
|
1525 |
-
- type: ndcg_at_5
|
1526 |
-
value: 38.676
|
1527 |
-
- type: precision_at_1
|
1528 |
-
value: 23.868000000000002
|
1529 |
-
- type: precision_at_10
|
1530 |
-
value: 6.6850000000000005
|
1531 |
-
- type: precision_at_100
|
1532 |
-
value: 0.9400000000000001
|
1533 |
-
- type: precision_at_1000
|
1534 |
-
value: 0.104
|
1535 |
-
- type: precision_at_3
|
1536 |
-
value: 14.651
|
1537 |
-
- type: precision_at_5
|
1538 |
-
value: 10.834000000000001
|
1539 |
-
- type: recall_at_1
|
1540 |
-
value: 23.301
|
1541 |
-
- type: recall_at_10
|
1542 |
-
value: 63.88700000000001
|
1543 |
-
- type: recall_at_100
|
1544 |
-
value: 88.947
|
1545 |
-
- type: recall_at_1000
|
1546 |
-
value: 97.783
|
1547 |
-
- type: recall_at_3
|
1548 |
-
value: 42.393
|
1549 |
-
- type: recall_at_5
|
1550 |
-
value: 52.036
|
1551 |
-
- task:
|
1552 |
-
type: Classification
|
1553 |
-
dataset:
|
1554 |
-
type: mteb/mtop_domain
|
1555 |
-
name: MTEB MTOPDomainClassification (en)
|
1556 |
-
config: en
|
1557 |
-
split: test
|
1558 |
-
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1559 |
-
metrics:
|
1560 |
-
- type: accuracy
|
1561 |
-
value: 94.64888280893753
|
1562 |
-
- type: f1
|
1563 |
-
value: 94.41310774203512
|
1564 |
-
- task:
|
1565 |
-
type: Classification
|
1566 |
-
dataset:
|
1567 |
-
type: mteb/mtop_intent
|
1568 |
-
name: MTEB MTOPIntentClassification (en)
|
1569 |
-
config: en
|
1570 |
-
split: test
|
1571 |
-
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1572 |
-
metrics:
|
1573 |
-
- type: accuracy
|
1574 |
-
value: 79.72184222526221
|
1575 |
-
- type: f1
|
1576 |
-
value: 61.522034067350106
|
1577 |
-
- task:
|
1578 |
-
type: Classification
|
1579 |
-
dataset:
|
1580 |
-
type: mteb/amazon_massive_intent
|
1581 |
-
name: MTEB MassiveIntentClassification (en)
|
1582 |
-
config: en
|
1583 |
-
split: test
|
1584 |
-
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1585 |
-
metrics:
|
1586 |
-
- type: accuracy
|
1587 |
-
value: 79.60659045057163
|
1588 |
-
- type: f1
|
1589 |
-
value: 77.268649687049
|
1590 |
-
- task:
|
1591 |
-
type: Classification
|
1592 |
-
dataset:
|
1593 |
-
type: mteb/amazon_massive_scenario
|
1594 |
-
name: MTEB MassiveScenarioClassification (en)
|
1595 |
-
config: en
|
1596 |
-
split: test
|
1597 |
-
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1598 |
-
metrics:
|
1599 |
-
- type: accuracy
|
1600 |
-
value: 81.83254875588432
|
1601 |
-
- type: f1
|
1602 |
-
value: 81.61520635919082
|
1603 |
-
- task:
|
1604 |
-
type: Clustering
|
1605 |
-
dataset:
|
1606 |
-
type: mteb/medrxiv-clustering-p2p
|
1607 |
-
name: MTEB MedrxivClusteringP2P
|
1608 |
-
config: default
|
1609 |
-
split: test
|
1610 |
-
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1611 |
-
metrics:
|
1612 |
-
- type: v_measure
|
1613 |
-
value: 36.31529875009507
|
1614 |
-
- task:
|
1615 |
-
type: Clustering
|
1616 |
-
dataset:
|
1617 |
-
type: mteb/medrxiv-clustering-s2s
|
1618 |
-
name: MTEB MedrxivClusteringS2S
|
1619 |
-
config: default
|
1620 |
-
split: test
|
1621 |
-
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1622 |
-
metrics:
|
1623 |
-
- type: v_measure
|
1624 |
-
value: 31.734233714415073
|
1625 |
-
- task:
|
1626 |
-
type: Reranking
|
1627 |
-
dataset:
|
1628 |
-
type: mteb/mind_small
|
1629 |
-
name: MTEB MindSmallReranking
|
1630 |
-
config: default
|
1631 |
-
split: test
|
1632 |
-
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1633 |
-
metrics:
|
1634 |
-
- type: map
|
1635 |
-
value: 30.994501713009452
|
1636 |
-
- type: mrr
|
1637 |
-
value: 32.13512850703073
|
1638 |
-
- task:
|
1639 |
-
type: Retrieval
|
1640 |
-
dataset:
|
1641 |
-
type: nfcorpus
|
1642 |
-
name: MTEB NFCorpus
|
1643 |
-
config: default
|
1644 |
-
split: test
|
1645 |
-
revision: None
|
1646 |
-
metrics:
|
1647 |
-
- type: map_at_1
|
1648 |
-
value: 6.603000000000001
|
1649 |
-
- type: map_at_10
|
1650 |
-
value: 13.767999999999999
|
1651 |
-
- type: map_at_100
|
1652 |
-
value: 17.197000000000003
|
1653 |
-
- type: map_at_1000
|
1654 |
-
value: 18.615000000000002
|
1655 |
-
- type: map_at_3
|
1656 |
-
value: 10.567
|
1657 |
-
- type: map_at_5
|
1658 |
-
value: 12.078999999999999
|
1659 |
-
- type: mrr_at_1
|
1660 |
-
value: 44.891999999999996
|
1661 |
-
- type: mrr_at_10
|
1662 |
-
value: 53.75299999999999
|
1663 |
-
- type: mrr_at_100
|
1664 |
-
value: 54.35
|
1665 |
-
- type: mrr_at_1000
|
1666 |
-
value: 54.388000000000005
|
1667 |
-
- type: mrr_at_3
|
1668 |
-
value: 51.495999999999995
|
1669 |
-
- type: mrr_at_5
|
1670 |
-
value: 52.688
|
1671 |
-
- type: ndcg_at_1
|
1672 |
-
value: 43.189
|
1673 |
-
- type: ndcg_at_10
|
1674 |
-
value: 34.567
|
1675 |
-
- type: ndcg_at_100
|
1676 |
-
value: 32.273
|
1677 |
-
- type: ndcg_at_1000
|
1678 |
-
value: 41.321999999999996
|
1679 |
-
- type: ndcg_at_3
|
1680 |
-
value: 40.171
|
1681 |
-
- type: ndcg_at_5
|
1682 |
-
value: 37.502
|
1683 |
-
- type: precision_at_1
|
1684 |
-
value: 44.582
|
1685 |
-
- type: precision_at_10
|
1686 |
-
value: 25.139
|
1687 |
-
- type: precision_at_100
|
1688 |
-
value: 7.739999999999999
|
1689 |
-
- type: precision_at_1000
|
1690 |
-
value: 2.054
|
1691 |
-
- type: precision_at_3
|
1692 |
-
value: 37.152
|
1693 |
-
- type: precision_at_5
|
1694 |
-
value: 31.826999999999998
|
1695 |
-
- type: recall_at_1
|
1696 |
-
value: 6.603000000000001
|
1697 |
-
- type: recall_at_10
|
1698 |
-
value: 17.023
|
1699 |
-
- type: recall_at_100
|
1700 |
-
value: 32.914
|
1701 |
-
- type: recall_at_1000
|
1702 |
-
value: 64.44800000000001
|
1703 |
-
- type: recall_at_3
|
1704 |
-
value: 11.457
|
1705 |
-
- type: recall_at_5
|
1706 |
-
value: 13.816
|
1707 |
-
- task:
|
1708 |
-
type: Retrieval
|
1709 |
-
dataset:
|
1710 |
-
type: nq
|
1711 |
-
name: MTEB NQ
|
1712 |
-
config: default
|
1713 |
-
split: test
|
1714 |
-
revision: None
|
1715 |
-
metrics:
|
1716 |
-
- type: map_at_1
|
1717 |
-
value: 30.026000000000003
|
1718 |
-
- type: map_at_10
|
1719 |
-
value: 45.429
|
1720 |
-
- type: map_at_100
|
1721 |
-
value: 46.45
|
1722 |
-
- type: map_at_1000
|
1723 |
-
value: 46.478
|
1724 |
-
- type: map_at_3
|
1725 |
-
value: 41.147
|
1726 |
-
- type: map_at_5
|
1727 |
-
value: 43.627
|
1728 |
-
- type: mrr_at_1
|
1729 |
-
value: 33.951
|
1730 |
-
- type: mrr_at_10
|
1731 |
-
value: 47.953
|
1732 |
-
- type: mrr_at_100
|
1733 |
-
value: 48.731
|
1734 |
-
- type: mrr_at_1000
|
1735 |
-
value: 48.751
|
1736 |
-
- type: mrr_at_3
|
1737 |
-
value: 44.39
|
1738 |
-
- type: mrr_at_5
|
1739 |
-
value: 46.533
|
1740 |
-
- type: ndcg_at_1
|
1741 |
-
value: 33.951
|
1742 |
-
- type: ndcg_at_10
|
1743 |
-
value: 53.24100000000001
|
1744 |
-
- type: ndcg_at_100
|
1745 |
-
value: 57.599999999999994
|
1746 |
-
- type: ndcg_at_1000
|
1747 |
-
value: 58.270999999999994
|
1748 |
-
- type: ndcg_at_3
|
1749 |
-
value: 45.190999999999995
|
1750 |
-
- type: ndcg_at_5
|
1751 |
-
value: 49.339
|
1752 |
-
- type: precision_at_1
|
1753 |
-
value: 33.951
|
1754 |
-
- type: precision_at_10
|
1755 |
-
value: 8.856
|
1756 |
-
- type: precision_at_100
|
1757 |
-
value: 1.133
|
1758 |
-
- type: precision_at_1000
|
1759 |
-
value: 0.12
|
1760 |
-
- type: precision_at_3
|
1761 |
-
value: 20.713
|
1762 |
-
- type: precision_at_5
|
1763 |
-
value: 14.838000000000001
|
1764 |
-
- type: recall_at_1
|
1765 |
-
value: 30.026000000000003
|
1766 |
-
- type: recall_at_10
|
1767 |
-
value: 74.512
|
1768 |
-
- type: recall_at_100
|
1769 |
-
value: 93.395
|
1770 |
-
- type: recall_at_1000
|
1771 |
-
value: 98.402
|
1772 |
-
- type: recall_at_3
|
1773 |
-
value: 53.677
|
1774 |
-
- type: recall_at_5
|
1775 |
-
value: 63.198
|
1776 |
-
- task:
|
1777 |
-
type: Retrieval
|
1778 |
-
dataset:
|
1779 |
-
type: quora
|
1780 |
-
name: MTEB QuoraRetrieval
|
1781 |
-
config: default
|
1782 |
-
split: test
|
1783 |
-
revision: None
|
1784 |
-
metrics:
|
1785 |
-
- type: map_at_1
|
1786 |
-
value: 71.41300000000001
|
1787 |
-
- type: map_at_10
|
1788 |
-
value: 85.387
|
1789 |
-
- type: map_at_100
|
1790 |
-
value: 86.027
|
1791 |
-
- type: map_at_1000
|
1792 |
-
value: 86.041
|
1793 |
-
- type: map_at_3
|
1794 |
-
value: 82.543
|
1795 |
-
- type: map_at_5
|
1796 |
-
value: 84.304
|
1797 |
-
- type: mrr_at_1
|
1798 |
-
value: 82.35
|
1799 |
-
- type: mrr_at_10
|
1800 |
-
value: 88.248
|
1801 |
-
- type: mrr_at_100
|
1802 |
-
value: 88.348
|
1803 |
-
- type: mrr_at_1000
|
1804 |
-
value: 88.349
|
1805 |
-
- type: mrr_at_3
|
1806 |
-
value: 87.348
|
1807 |
-
- type: mrr_at_5
|
1808 |
-
value: 87.96300000000001
|
1809 |
-
- type: ndcg_at_1
|
1810 |
-
value: 82.37
|
1811 |
-
- type: ndcg_at_10
|
1812 |
-
value: 88.98
|
1813 |
-
- type: ndcg_at_100
|
1814 |
-
value: 90.16499999999999
|
1815 |
-
- type: ndcg_at_1000
|
1816 |
-
value: 90.239
|
1817 |
-
- type: ndcg_at_3
|
1818 |
-
value: 86.34100000000001
|
1819 |
-
- type: ndcg_at_5
|
1820 |
-
value: 87.761
|
1821 |
-
- type: precision_at_1
|
1822 |
-
value: 82.37
|
1823 |
-
- type: precision_at_10
|
1824 |
-
value: 13.471
|
1825 |
-
- type: precision_at_100
|
1826 |
-
value: 1.534
|
1827 |
-
- type: precision_at_1000
|
1828 |
-
value: 0.157
|
1829 |
-
- type: precision_at_3
|
1830 |
-
value: 37.827
|
1831 |
-
- type: precision_at_5
|
1832 |
-
value: 24.773999999999997
|
1833 |
-
- type: recall_at_1
|
1834 |
-
value: 71.41300000000001
|
1835 |
-
- type: recall_at_10
|
1836 |
-
value: 95.748
|
1837 |
-
- type: recall_at_100
|
1838 |
-
value: 99.69200000000001
|
1839 |
-
- type: recall_at_1000
|
1840 |
-
value: 99.98
|
1841 |
-
- type: recall_at_3
|
1842 |
-
value: 87.996
|
1843 |
-
- type: recall_at_5
|
1844 |
-
value: 92.142
|
1845 |
-
- task:
|
1846 |
-
type: Clustering
|
1847 |
-
dataset:
|
1848 |
-
type: mteb/reddit-clustering
|
1849 |
-
name: MTEB RedditClustering
|
1850 |
-
config: default
|
1851 |
-
split: test
|
1852 |
-
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1853 |
-
metrics:
|
1854 |
-
- type: v_measure
|
1855 |
-
value: 56.96878497780007
|
1856 |
-
- task:
|
1857 |
-
type: Clustering
|
1858 |
-
dataset:
|
1859 |
-
type: mteb/reddit-clustering-p2p
|
1860 |
-
name: MTEB RedditClusteringP2P
|
1861 |
-
config: default
|
1862 |
-
split: test
|
1863 |
-
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1864 |
-
metrics:
|
1865 |
-
- type: v_measure
|
1866 |
-
value: 65.31371347128074
|
1867 |
-
- task:
|
1868 |
-
type: Retrieval
|
1869 |
-
dataset:
|
1870 |
-
type: scidocs
|
1871 |
-
name: MTEB SCIDOCS
|
1872 |
-
config: default
|
1873 |
-
split: test
|
1874 |
-
revision: None
|
1875 |
-
metrics:
|
1876 |
-
- type: map_at_1
|
1877 |
-
value: 5.287
|
1878 |
-
- type: map_at_10
|
1879 |
-
value: 13.530000000000001
|
1880 |
-
- type: map_at_100
|
1881 |
-
value: 15.891
|
1882 |
-
- type: map_at_1000
|
1883 |
-
value: 16.245
|
1884 |
-
- type: map_at_3
|
1885 |
-
value: 9.612
|
1886 |
-
- type: map_at_5
|
1887 |
-
value: 11.672
|
1888 |
-
- type: mrr_at_1
|
1889 |
-
value: 26
|
1890 |
-
- type: mrr_at_10
|
1891 |
-
value: 37.335
|
1892 |
-
- type: mrr_at_100
|
1893 |
-
value: 38.443
|
1894 |
-
- type: mrr_at_1000
|
1895 |
-
value: 38.486
|
1896 |
-
- type: mrr_at_3
|
1897 |
-
value: 33.783
|
1898 |
-
- type: mrr_at_5
|
1899 |
-
value: 36.028
|
1900 |
-
- type: ndcg_at_1
|
1901 |
-
value: 26
|
1902 |
-
- type: ndcg_at_10
|
1903 |
-
value: 22.215
|
1904 |
-
- type: ndcg_at_100
|
1905 |
-
value: 31.101
|
1906 |
-
- type: ndcg_at_1000
|
1907 |
-
value: 36.809
|
1908 |
-
- type: ndcg_at_3
|
1909 |
-
value: 21.104
|
1910 |
-
- type: ndcg_at_5
|
1911 |
-
value: 18.759999999999998
|
1912 |
-
- type: precision_at_1
|
1913 |
-
value: 26
|
1914 |
-
- type: precision_at_10
|
1915 |
-
value: 11.43
|
1916 |
-
- type: precision_at_100
|
1917 |
-
value: 2.424
|
1918 |
-
- type: precision_at_1000
|
1919 |
-
value: 0.379
|
1920 |
-
- type: precision_at_3
|
1921 |
-
value: 19.7
|
1922 |
-
- type: precision_at_5
|
1923 |
-
value: 16.619999999999997
|
1924 |
-
- type: recall_at_1
|
1925 |
-
value: 5.287
|
1926 |
-
- type: recall_at_10
|
1927 |
-
value: 23.18
|
1928 |
-
- type: recall_at_100
|
1929 |
-
value: 49.208
|
1930 |
-
- type: recall_at_1000
|
1931 |
-
value: 76.85300000000001
|
1932 |
-
- type: recall_at_3
|
1933 |
-
value: 11.991999999999999
|
1934 |
-
- type: recall_at_5
|
1935 |
-
value: 16.85
|
1936 |
-
- task:
|
1937 |
-
type: STS
|
1938 |
-
dataset:
|
1939 |
-
type: mteb/sickr-sts
|
1940 |
-
name: MTEB SICK-R
|
1941 |
-
config: default
|
1942 |
-
split: test
|
1943 |
-
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1944 |
-
metrics:
|
1945 |
-
- type: cos_sim_pearson
|
1946 |
-
value: 83.87834913790886
|
1947 |
-
- type: cos_sim_spearman
|
1948 |
-
value: 81.04583513112122
|
1949 |
-
- type: euclidean_pearson
|
1950 |
-
value: 81.20484174558065
|
1951 |
-
- type: euclidean_spearman
|
1952 |
-
value: 80.76430832561769
|
1953 |
-
- type: manhattan_pearson
|
1954 |
-
value: 81.21416730978615
|
1955 |
-
- type: manhattan_spearman
|
1956 |
-
value: 80.7797637394211
|
1957 |
-
- task:
|
1958 |
-
type: STS
|
1959 |
-
dataset:
|
1960 |
-
type: mteb/sts12-sts
|
1961 |
-
name: MTEB STS12
|
1962 |
-
config: default
|
1963 |
-
split: test
|
1964 |
-
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1965 |
-
metrics:
|
1966 |
-
- type: cos_sim_pearson
|
1967 |
-
value: 86.56143998865157
|
1968 |
-
- type: cos_sim_spearman
|
1969 |
-
value: 79.75387012744471
|
1970 |
-
- type: euclidean_pearson
|
1971 |
-
value: 83.7877519997019
|
1972 |
-
- type: euclidean_spearman
|
1973 |
-
value: 79.90489748003296
|
1974 |
-
- type: manhattan_pearson
|
1975 |
-
value: 83.7540590666095
|
1976 |
-
- type: manhattan_spearman
|
1977 |
-
value: 79.86434577931573
|
1978 |
-
- task:
|
1979 |
-
type: STS
|
1980 |
-
dataset:
|
1981 |
-
type: mteb/sts13-sts
|
1982 |
-
name: MTEB STS13
|
1983 |
-
config: default
|
1984 |
-
split: test
|
1985 |
-
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1986 |
-
metrics:
|
1987 |
-
- type: cos_sim_pearson
|
1988 |
-
value: 83.92102564177941
|
1989 |
-
- type: cos_sim_spearman
|
1990 |
-
value: 84.98234585939103
|
1991 |
-
- type: euclidean_pearson
|
1992 |
-
value: 84.47729567593696
|
1993 |
-
- type: euclidean_spearman
|
1994 |
-
value: 85.09490696194469
|
1995 |
-
- type: manhattan_pearson
|
1996 |
-
value: 84.38622951588229
|
1997 |
-
- type: manhattan_spearman
|
1998 |
-
value: 85.02507171545574
|
1999 |
-
- task:
|
2000 |
-
type: STS
|
2001 |
-
dataset:
|
2002 |
-
type: mteb/sts14-sts
|
2003 |
-
name: MTEB STS14
|
2004 |
-
config: default
|
2005 |
-
split: test
|
2006 |
-
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2007 |
-
metrics:
|
2008 |
-
- type: cos_sim_pearson
|
2009 |
-
value: 80.1891164763377
|
2010 |
-
- type: cos_sim_spearman
|
2011 |
-
value: 80.7997969966883
|
2012 |
-
- type: euclidean_pearson
|
2013 |
-
value: 80.48572256162396
|
2014 |
-
- type: euclidean_spearman
|
2015 |
-
value: 80.57851903536378
|
2016 |
-
- type: manhattan_pearson
|
2017 |
-
value: 80.4324819433651
|
2018 |
-
- type: manhattan_spearman
|
2019 |
-
value: 80.5074526239062
|
2020 |
-
- task:
|
2021 |
-
type: STS
|
2022 |
-
dataset:
|
2023 |
-
type: mteb/sts15-sts
|
2024 |
-
name: MTEB STS15
|
2025 |
-
config: default
|
2026 |
-
split: test
|
2027 |
-
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2028 |
-
metrics:
|
2029 |
-
- type: cos_sim_pearson
|
2030 |
-
value: 82.64319975116025
|
2031 |
-
- type: cos_sim_spearman
|
2032 |
-
value: 84.88671197763652
|
2033 |
-
- type: euclidean_pearson
|
2034 |
-
value: 84.74692193293231
|
2035 |
-
- type: euclidean_spearman
|
2036 |
-
value: 85.27151722073653
|
2037 |
-
- type: manhattan_pearson
|
2038 |
-
value: 84.72460516785438
|
2039 |
-
- type: manhattan_spearman
|
2040 |
-
value: 85.26518899786687
|
2041 |
-
- task:
|
2042 |
-
type: STS
|
2043 |
-
dataset:
|
2044 |
-
type: mteb/sts16-sts
|
2045 |
-
name: MTEB STS16
|
2046 |
-
config: default
|
2047 |
-
split: test
|
2048 |
-
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2049 |
-
metrics:
|
2050 |
-
- type: cos_sim_pearson
|
2051 |
-
value: 83.24687565822381
|
2052 |
-
- type: cos_sim_spearman
|
2053 |
-
value: 85.60418454111263
|
2054 |
-
- type: euclidean_pearson
|
2055 |
-
value: 84.85829740169851
|
2056 |
-
- type: euclidean_spearman
|
2057 |
-
value: 85.66378014138306
|
2058 |
-
- type: manhattan_pearson
|
2059 |
-
value: 84.84672408808835
|
2060 |
-
- type: manhattan_spearman
|
2061 |
-
value: 85.63331924364891
|
2062 |
-
- task:
|
2063 |
-
type: STS
|
2064 |
-
dataset:
|
2065 |
-
type: mteb/sts17-crosslingual-sts
|
2066 |
-
name: MTEB STS17 (en-en)
|
2067 |
-
config: en-en
|
2068 |
-
split: test
|
2069 |
-
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2070 |
-
metrics:
|
2071 |
-
- type: cos_sim_pearson
|
2072 |
-
value: 84.87758895415485
|
2073 |
-
- type: cos_sim_spearman
|
2074 |
-
value: 85.8193745617297
|
2075 |
-
- type: euclidean_pearson
|
2076 |
-
value: 85.78719118848134
|
2077 |
-
- type: euclidean_spearman
|
2078 |
-
value: 84.35797575385688
|
2079 |
-
- type: manhattan_pearson
|
2080 |
-
value: 85.97919844815692
|
2081 |
-
- type: manhattan_spearman
|
2082 |
-
value: 84.58334745175151
|
2083 |
-
- task:
|
2084 |
-
type: STS
|
2085 |
-
dataset:
|
2086 |
-
type: mteb/sts22-crosslingual-sts
|
2087 |
-
name: MTEB STS22 (en)
|
2088 |
-
config: en
|
2089 |
-
split: test
|
2090 |
-
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2091 |
-
metrics:
|
2092 |
-
- type: cos_sim_pearson
|
2093 |
-
value: 67.27076035963599
|
2094 |
-
- type: cos_sim_spearman
|
2095 |
-
value: 67.21433656439973
|
2096 |
-
- type: euclidean_pearson
|
2097 |
-
value: 68.07434078679324
|
2098 |
-
- type: euclidean_spearman
|
2099 |
-
value: 66.0249731719049
|
2100 |
-
- type: manhattan_pearson
|
2101 |
-
value: 67.95495198947476
|
2102 |
-
- type: manhattan_spearman
|
2103 |
-
value: 65.99893908331886
|
2104 |
-
- task:
|
2105 |
-
type: STS
|
2106 |
-
dataset:
|
2107 |
-
type: mteb/stsbenchmark-sts
|
2108 |
-
name: MTEB STSBenchmark
|
2109 |
-
config: default
|
2110 |
-
split: test
|
2111 |
-
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2112 |
-
metrics:
|
2113 |
-
- type: cos_sim_pearson
|
2114 |
-
value: 82.22437747056817
|
2115 |
-
- type: cos_sim_spearman
|
2116 |
-
value: 85.0995685206174
|
2117 |
-
- type: euclidean_pearson
|
2118 |
-
value: 84.08616925603394
|
2119 |
-
- type: euclidean_spearman
|
2120 |
-
value: 84.89633925691658
|
2121 |
-
- type: manhattan_pearson
|
2122 |
-
value: 84.08332675923133
|
2123 |
-
- type: manhattan_spearman
|
2124 |
-
value: 84.8858228112915
|
2125 |
-
- task:
|
2126 |
-
type: Reranking
|
2127 |
-
dataset:
|
2128 |
-
type: mteb/scidocs-reranking
|
2129 |
-
name: MTEB SciDocsRR
|
2130 |
-
config: default
|
2131 |
-
split: test
|
2132 |
-
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2133 |
-
metrics:
|
2134 |
-
- type: map
|
2135 |
-
value: 87.6909022589666
|
2136 |
-
- type: mrr
|
2137 |
-
value: 96.43341952165481
|
2138 |
-
- task:
|
2139 |
-
type: Retrieval
|
2140 |
-
dataset:
|
2141 |
-
type: scifact
|
2142 |
-
name: MTEB SciFact
|
2143 |
-
config: default
|
2144 |
-
split: test
|
2145 |
-
revision: None
|
2146 |
-
metrics:
|
2147 |
-
- type: map_at_1
|
2148 |
-
value: 57.660999999999994
|
2149 |
-
- type: map_at_10
|
2150 |
-
value: 67.625
|
2151 |
-
- type: map_at_100
|
2152 |
-
value: 68.07600000000001
|
2153 |
-
- type: map_at_1000
|
2154 |
-
value: 68.10199999999999
|
2155 |
-
- type: map_at_3
|
2156 |
-
value: 64.50399999999999
|
2157 |
-
- type: map_at_5
|
2158 |
-
value: 66.281
|
2159 |
-
- type: mrr_at_1
|
2160 |
-
value: 61
|
2161 |
-
- type: mrr_at_10
|
2162 |
-
value: 68.953
|
2163 |
-
- type: mrr_at_100
|
2164 |
-
value: 69.327
|
2165 |
-
- type: mrr_at_1000
|
2166 |
-
value: 69.352
|
2167 |
-
- type: mrr_at_3
|
2168 |
-
value: 66.833
|
2169 |
-
- type: mrr_at_5
|
2170 |
-
value: 68.05
|
2171 |
-
- type: ndcg_at_1
|
2172 |
-
value: 61
|
2173 |
-
- type: ndcg_at_10
|
2174 |
-
value: 72.369
|
2175 |
-
- type: ndcg_at_100
|
2176 |
-
value: 74.237
|
2177 |
-
- type: ndcg_at_1000
|
2178 |
-
value: 74.939
|
2179 |
-
- type: ndcg_at_3
|
2180 |
-
value: 67.284
|
2181 |
-
- type: ndcg_at_5
|
2182 |
-
value: 69.72500000000001
|
2183 |
-
- type: precision_at_1
|
2184 |
-
value: 61
|
2185 |
-
- type: precision_at_10
|
2186 |
-
value: 9.733
|
2187 |
-
- type: precision_at_100
|
2188 |
-
value: 1.0670000000000002
|
2189 |
-
- type: precision_at_1000
|
2190 |
-
value: 0.11199999999999999
|
2191 |
-
- type: precision_at_3
|
2192 |
-
value: 26.222
|
2193 |
-
- type: precision_at_5
|
2194 |
-
value: 17.4
|
2195 |
-
- type: recall_at_1
|
2196 |
-
value: 57.660999999999994
|
2197 |
-
- type: recall_at_10
|
2198 |
-
value: 85.656
|
2199 |
-
- type: recall_at_100
|
2200 |
-
value: 93.833
|
2201 |
-
- type: recall_at_1000
|
2202 |
-
value: 99.333
|
2203 |
-
- type: recall_at_3
|
2204 |
-
value: 71.961
|
2205 |
-
- type: recall_at_5
|
2206 |
-
value: 78.094
|
2207 |
-
- task:
|
2208 |
-
type: PairClassification
|
2209 |
-
dataset:
|
2210 |
-
type: mteb/sprintduplicatequestions-pairclassification
|
2211 |
-
name: MTEB SprintDuplicateQuestions
|
2212 |
-
config: default
|
2213 |
-
split: test
|
2214 |
-
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2215 |
-
metrics:
|
2216 |
-
- type: cos_sim_accuracy
|
2217 |
-
value: 99.86930693069307
|
2218 |
-
- type: cos_sim_ap
|
2219 |
-
value: 96.76685487950894
|
2220 |
-
- type: cos_sim_f1
|
2221 |
-
value: 93.44587884806354
|
2222 |
-
- type: cos_sim_precision
|
2223 |
-
value: 92.80078895463511
|
2224 |
-
- type: cos_sim_recall
|
2225 |
-
value: 94.1
|
2226 |
-
- type: dot_accuracy
|
2227 |
-
value: 99.54356435643564
|
2228 |
-
- type: dot_ap
|
2229 |
-
value: 81.18659960405607
|
2230 |
-
- type: dot_f1
|
2231 |
-
value: 75.78008915304605
|
2232 |
-
- type: dot_precision
|
2233 |
-
value: 75.07360157016683
|
2234 |
-
- type: dot_recall
|
2235 |
-
value: 76.5
|
2236 |
-
- type: euclidean_accuracy
|
2237 |
-
value: 99.87326732673267
|
2238 |
-
- type: euclidean_ap
|
2239 |
-
value: 96.8102411908941
|
2240 |
-
- type: euclidean_f1
|
2241 |
-
value: 93.6127744510978
|
2242 |
-
- type: euclidean_precision
|
2243 |
-
value: 93.42629482071713
|
2244 |
-
- type: euclidean_recall
|
2245 |
-
value: 93.8
|
2246 |
-
- type: manhattan_accuracy
|
2247 |
-
value: 99.87425742574257
|
2248 |
-
- type: manhattan_ap
|
2249 |
-
value: 96.82857341435529
|
2250 |
-
- type: manhattan_f1
|
2251 |
-
value: 93.62129583124059
|
2252 |
-
- type: manhattan_precision
|
2253 |
-
value: 94.04641775983855
|
2254 |
-
- type: manhattan_recall
|
2255 |
-
value: 93.2
|
2256 |
-
- type: max_accuracy
|
2257 |
-
value: 99.87425742574257
|
2258 |
-
- type: max_ap
|
2259 |
-
value: 96.82857341435529
|
2260 |
-
- type: max_f1
|
2261 |
-
value: 93.62129583124059
|
2262 |
-
- task:
|
2263 |
-
type: Clustering
|
2264 |
-
dataset:
|
2265 |
-
type: mteb/stackexchange-clustering
|
2266 |
-
name: MTEB StackExchangeClustering
|
2267 |
-
config: default
|
2268 |
-
split: test
|
2269 |
-
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2270 |
-
metrics:
|
2271 |
-
- type: v_measure
|
2272 |
-
value: 65.92560972698926
|
2273 |
-
- task:
|
2274 |
-
type: Clustering
|
2275 |
-
dataset:
|
2276 |
-
type: mteb/stackexchange-clustering-p2p
|
2277 |
-
name: MTEB StackExchangeClusteringP2P
|
2278 |
-
config: default
|
2279 |
-
split: test
|
2280 |
-
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2281 |
-
metrics:
|
2282 |
-
- type: v_measure
|
2283 |
-
value: 34.92797240259008
|
2284 |
-
- task:
|
2285 |
-
type: Reranking
|
2286 |
-
dataset:
|
2287 |
-
type: mteb/stackoverflowdupquestions-reranking
|
2288 |
-
name: MTEB StackOverflowDupQuestions
|
2289 |
-
config: default
|
2290 |
-
split: test
|
2291 |
-
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2292 |
-
metrics:
|
2293 |
-
- type: map
|
2294 |
-
value: 55.244624045597654
|
2295 |
-
- type: mrr
|
2296 |
-
value: 56.185303666921314
|
2297 |
-
- task:
|
2298 |
-
type: Summarization
|
2299 |
-
dataset:
|
2300 |
-
type: mteb/summeval
|
2301 |
-
name: MTEB SummEval
|
2302 |
-
config: default
|
2303 |
-
split: test
|
2304 |
-
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2305 |
-
metrics:
|
2306 |
-
- type: cos_sim_pearson
|
2307 |
-
value: 31.02491987312937
|
2308 |
-
- type: cos_sim_spearman
|
2309 |
-
value: 32.055592206679734
|
2310 |
-
- type: dot_pearson
|
2311 |
-
value: 24.731627575422557
|
2312 |
-
- type: dot_spearman
|
2313 |
-
value: 24.308029077069733
|
2314 |
-
- task:
|
2315 |
-
type: Retrieval
|
2316 |
-
dataset:
|
2317 |
-
type: trec-covid
|
2318 |
-
name: MTEB TRECCOVID
|
2319 |
-
config: default
|
2320 |
-
split: test
|
2321 |
-
revision: None
|
2322 |
-
metrics:
|
2323 |
-
- type: map_at_1
|
2324 |
-
value: 0.231
|
2325 |
-
- type: map_at_10
|
2326 |
-
value: 1.899
|
2327 |
-
- type: map_at_100
|
2328 |
-
value: 9.498
|
2329 |
-
- type: map_at_1000
|
2330 |
-
value: 20.979999999999997
|
2331 |
-
- type: map_at_3
|
2332 |
-
value: 0.652
|
2333 |
-
- type: map_at_5
|
2334 |
-
value: 1.069
|
2335 |
-
- type: mrr_at_1
|
2336 |
-
value: 88
|
2337 |
-
- type: mrr_at_10
|
2338 |
-
value: 93.4
|
2339 |
-
- type: mrr_at_100
|
2340 |
-
value: 93.4
|
2341 |
-
- type: mrr_at_1000
|
2342 |
-
value: 93.4
|
2343 |
-
- type: mrr_at_3
|
2344 |
-
value: 93
|
2345 |
-
- type: mrr_at_5
|
2346 |
-
value: 93.4
|
2347 |
-
- type: ndcg_at_1
|
2348 |
-
value: 86
|
2349 |
-
- type: ndcg_at_10
|
2350 |
-
value: 75.375
|
2351 |
-
- type: ndcg_at_100
|
2352 |
-
value: 52.891999999999996
|
2353 |
-
- type: ndcg_at_1000
|
2354 |
-
value: 44.952999999999996
|
2355 |
-
- type: ndcg_at_3
|
2356 |
-
value: 81.05
|
2357 |
-
- type: ndcg_at_5
|
2358 |
-
value: 80.175
|
2359 |
-
- type: precision_at_1
|
2360 |
-
value: 88
|
2361 |
-
- type: precision_at_10
|
2362 |
-
value: 79
|
2363 |
-
- type: precision_at_100
|
2364 |
-
value: 53.16
|
2365 |
-
- type: precision_at_1000
|
2366 |
-
value: 19.408
|
2367 |
-
- type: precision_at_3
|
2368 |
-
value: 85.333
|
2369 |
-
- type: precision_at_5
|
2370 |
-
value: 84
|
2371 |
-
- type: recall_at_1
|
2372 |
-
value: 0.231
|
2373 |
-
- type: recall_at_10
|
2374 |
-
value: 2.078
|
2375 |
-
- type: recall_at_100
|
2376 |
-
value: 12.601
|
2377 |
-
- type: recall_at_1000
|
2378 |
-
value: 41.296
|
2379 |
-
- type: recall_at_3
|
2380 |
-
value: 0.6779999999999999
|
2381 |
-
- type: recall_at_5
|
2382 |
-
value: 1.1360000000000001
|
2383 |
-
- task:
|
2384 |
-
type: Retrieval
|
2385 |
-
dataset:
|
2386 |
-
type: webis-touche2020
|
2387 |
-
name: MTEB Touche2020
|
2388 |
-
config: default
|
2389 |
-
split: test
|
2390 |
-
revision: None
|
2391 |
-
metrics:
|
2392 |
-
- type: map_at_1
|
2393 |
-
value: 2.782
|
2394 |
-
- type: map_at_10
|
2395 |
-
value: 10.204
|
2396 |
-
- type: map_at_100
|
2397 |
-
value: 16.176
|
2398 |
-
- type: map_at_1000
|
2399 |
-
value: 17.456
|
2400 |
-
- type: map_at_3
|
2401 |
-
value: 5.354
|
2402 |
-
- type: map_at_5
|
2403 |
-
value: 7.503
|
2404 |
-
- type: mrr_at_1
|
2405 |
-
value: 40.816
|
2406 |
-
- type: mrr_at_10
|
2407 |
-
value: 54.010000000000005
|
2408 |
-
- type: mrr_at_100
|
2409 |
-
value: 54.49
|
2410 |
-
- type: mrr_at_1000
|
2411 |
-
value: 54.49
|
2412 |
-
- type: mrr_at_3
|
2413 |
-
value: 48.980000000000004
|
2414 |
-
- type: mrr_at_5
|
2415 |
-
value: 51.735
|
2416 |
-
- type: ndcg_at_1
|
2417 |
-
value: 36.735
|
2418 |
-
- type: ndcg_at_10
|
2419 |
-
value: 26.61
|
2420 |
-
- type: ndcg_at_100
|
2421 |
-
value: 36.967
|
2422 |
-
- type: ndcg_at_1000
|
2423 |
-
value: 47.274
|
2424 |
-
- type: ndcg_at_3
|
2425 |
-
value: 30.363
|
2426 |
-
- type: ndcg_at_5
|
2427 |
-
value: 29.448999999999998
|
2428 |
-
- type: precision_at_1
|
2429 |
-
value: 40.816
|
2430 |
-
- type: precision_at_10
|
2431 |
-
value: 23.878
|
2432 |
-
- type: precision_at_100
|
2433 |
-
value: 7.693999999999999
|
2434 |
-
- type: precision_at_1000
|
2435 |
-
value: 1.4489999999999998
|
2436 |
-
- type: precision_at_3
|
2437 |
-
value: 31.293
|
2438 |
-
- type: precision_at_5
|
2439 |
-
value: 29.796
|
2440 |
-
- type: recall_at_1
|
2441 |
-
value: 2.782
|
2442 |
-
- type: recall_at_10
|
2443 |
-
value: 16.485
|
2444 |
-
- type: recall_at_100
|
2445 |
-
value: 46.924
|
2446 |
-
- type: recall_at_1000
|
2447 |
-
value: 79.365
|
2448 |
-
- type: recall_at_3
|
2449 |
-
value: 6.52
|
2450 |
-
- type: recall_at_5
|
2451 |
-
value: 10.48
|
2452 |
-
- task:
|
2453 |
-
type: Classification
|
2454 |
-
dataset:
|
2455 |
-
type: mteb/toxic_conversations_50k
|
2456 |
-
name: MTEB ToxicConversationsClassification
|
2457 |
-
config: default
|
2458 |
-
split: test
|
2459 |
-
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2460 |
-
metrics:
|
2461 |
-
- type: accuracy
|
2462 |
-
value: 70.08300000000001
|
2463 |
-
- type: ap
|
2464 |
-
value: 13.91559884590195
|
2465 |
-
- type: f1
|
2466 |
-
value: 53.956838444291364
|
2467 |
-
- task:
|
2468 |
-
type: Classification
|
2469 |
-
dataset:
|
2470 |
-
type: mteb/tweet_sentiment_extraction
|
2471 |
-
name: MTEB TweetSentimentExtractionClassification
|
2472 |
-
config: default
|
2473 |
-
split: test
|
2474 |
-
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2475 |
-
metrics:
|
2476 |
-
- type: accuracy
|
2477 |
-
value: 59.34069043576683
|
2478 |
-
- type: f1
|
2479 |
-
value: 59.662041994618406
|
2480 |
-
- task:
|
2481 |
-
type: Clustering
|
2482 |
-
dataset:
|
2483 |
-
type: mteb/twentynewsgroups-clustering
|
2484 |
-
name: MTEB TwentyNewsgroupsClustering
|
2485 |
-
config: default
|
2486 |
-
split: test
|
2487 |
-
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2488 |
-
metrics:
|
2489 |
-
- type: v_measure
|
2490 |
-
value: 53.70780611078653
|
2491 |
-
- task:
|
2492 |
-
type: PairClassification
|
2493 |
-
dataset:
|
2494 |
-
type: mteb/twittersemeval2015-pairclassification
|
2495 |
-
name: MTEB TwitterSemEval2015
|
2496 |
-
config: default
|
2497 |
-
split: test
|
2498 |
-
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2499 |
-
metrics:
|
2500 |
-
- type: cos_sim_accuracy
|
2501 |
-
value: 87.10734934732073
|
2502 |
-
- type: cos_sim_ap
|
2503 |
-
value: 77.58349999516054
|
2504 |
-
- type: cos_sim_f1
|
2505 |
-
value: 70.25391395868965
|
2506 |
-
- type: cos_sim_precision
|
2507 |
-
value: 70.06035161374967
|
2508 |
-
- type: cos_sim_recall
|
2509 |
-
value: 70.44854881266491
|
2510 |
-
- type: dot_accuracy
|
2511 |
-
value: 80.60439887941826
|
2512 |
-
- type: dot_ap
|
2513 |
-
value: 54.52935200483575
|
2514 |
-
- type: dot_f1
|
2515 |
-
value: 54.170444242973716
|
2516 |
-
- type: dot_precision
|
2517 |
-
value: 47.47715534366309
|
2518 |
-
- type: dot_recall
|
2519 |
-
value: 63.06068601583114
|
2520 |
-
- type: euclidean_accuracy
|
2521 |
-
value: 87.26828396018358
|
2522 |
-
- type: euclidean_ap
|
2523 |
-
value: 78.00158454104036
|
2524 |
-
- type: euclidean_f1
|
2525 |
-
value: 70.70292457670601
|
2526 |
-
- type: euclidean_precision
|
2527 |
-
value: 68.79680479281079
|
2528 |
-
- type: euclidean_recall
|
2529 |
-
value: 72.71767810026385
|
2530 |
-
- type: manhattan_accuracy
|
2531 |
-
value: 87.11330988853788
|
2532 |
-
- type: manhattan_ap
|
2533 |
-
value: 77.92527099601855
|
2534 |
-
- type: manhattan_f1
|
2535 |
-
value: 70.76488706365502
|
2536 |
-
- type: manhattan_precision
|
2537 |
-
value: 68.89055472263868
|
2538 |
-
- type: manhattan_recall
|
2539 |
-
value: 72.74406332453826
|
2540 |
-
- type: max_accuracy
|
2541 |
-
value: 87.26828396018358
|
2542 |
-
- type: max_ap
|
2543 |
-
value: 78.00158454104036
|
2544 |
-
- type: max_f1
|
2545 |
-
value: 70.76488706365502
|
2546 |
-
- task:
|
2547 |
-
type: PairClassification
|
2548 |
-
dataset:
|
2549 |
-
type: mteb/twitterurlcorpus-pairclassification
|
2550 |
-
name: MTEB TwitterURLCorpus
|
2551 |
-
config: default
|
2552 |
-
split: test
|
2553 |
-
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2554 |
-
metrics:
|
2555 |
-
- type: cos_sim_accuracy
|
2556 |
-
value: 87.80804905499282
|
2557 |
-
- type: cos_sim_ap
|
2558 |
-
value: 83.06187782630936
|
2559 |
-
- type: cos_sim_f1
|
2560 |
-
value: 74.99716435403985
|
2561 |
-
- type: cos_sim_precision
|
2562 |
-
value: 73.67951860931579
|
2563 |
-
- type: cos_sim_recall
|
2564 |
-
value: 76.36279642747151
|
2565 |
-
- type: dot_accuracy
|
2566 |
-
value: 81.83141227151008
|
2567 |
-
- type: dot_ap
|
2568 |
-
value: 67.18241090841795
|
2569 |
-
- type: dot_f1
|
2570 |
-
value: 62.216037571751606
|
2571 |
-
- type: dot_precision
|
2572 |
-
value: 56.749381227391005
|
2573 |
-
- type: dot_recall
|
2574 |
-
value: 68.84816753926701
|
2575 |
-
- type: euclidean_accuracy
|
2576 |
-
value: 87.91671517832887
|
2577 |
-
- type: euclidean_ap
|
2578 |
-
value: 83.56538942001427
|
2579 |
-
- type: euclidean_f1
|
2580 |
-
value: 75.7327253337256
|
2581 |
-
- type: euclidean_precision
|
2582 |
-
value: 72.48856036606828
|
2583 |
-
- type: euclidean_recall
|
2584 |
-
value: 79.28087465352634
|
2585 |
-
- type: manhattan_accuracy
|
2586 |
-
value: 87.86626304963713
|
2587 |
-
- type: manhattan_ap
|
2588 |
-
value: 83.52939841172832
|
2589 |
-
- type: manhattan_f1
|
2590 |
-
value: 75.73635656329888
|
2591 |
-
- type: manhattan_precision
|
2592 |
-
value: 72.99150182103836
|
2593 |
-
- type: manhattan_recall
|
2594 |
-
value: 78.69571912534647
|
2595 |
-
- type: max_accuracy
|
2596 |
-
value: 87.91671517832887
|
2597 |
-
- type: max_ap
|
2598 |
-
value: 83.56538942001427
|
2599 |
-
- type: max_f1
|
2600 |
-
value: 75.73635656329888
|
2601 |
license: mit
|
2602 |
language:
|
2603 |
- en
|
2604 |
-
pipeline_tag: sentence-similarity
|
2605 |
---
|
2606 |
|
|
|
2607 |
<h1 align="center">FlagEmbedding</h1>
|
2608 |
|
2609 |
|
@@ -2613,11 +20,14 @@ pipeline_tag: sentence-similarity
|
|
2613 |
<a href=#usage>Usage</a> |
|
2614 |
<a href="#evaluation">Evaluation</a> |
|
2615 |
<a href="#train">Train</a> |
|
|
|
2616 |
<a href="#license">License</a>
|
2617 |
<p>
|
2618 |
</h4>
|
2619 |
|
2620 |
-
|
|
|
|
|
2621 |
|
2622 |
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
2623 |
|
@@ -2625,6 +35,11 @@ FlagEmbedding can map any text to a low-dimensional dense vector which can be us
|
|
2625 |
And it also can be used in vector databases for LLMs.
|
2626 |
|
2627 |
************* 🌟**Updates**🌟 *************
|
|
|
|
|
|
|
|
|
|
|
2628 |
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
2629 |
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
2630 |
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
@@ -2634,88 +49,182 @@ And it also can be used in vector databases for LLMs.
|
|
2634 |
|
2635 |
`bge` is short for `BAAI general embedding`.
|
2636 |
|
2637 |
-
| Model | Language | Description | query instruction for retrieval |
|
2638 |
-
|:-------------------------------|:--------:| :--------:|
|
2639 |
-
| [BAAI/bge-large
|
2640 |
-
| [BAAI/bge-base
|
2641 |
-
| [BAAI/bge-
|
2642 |
-
| [BAAI/bge-
|
2643 |
-
| [BAAI/bge-
|
2644 |
-
| [BAAI/bge-
|
2645 |
-
| [BAAI/bge-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2646 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2647 |
|
2648 |
|
2649 |
## Usage
|
2650 |
|
2651 |
-
|
|
|
|
|
|
|
|
|
|
|
2652 |
```
|
2653 |
pip install -U FlagEmbedding
|
2654 |
```
|
2655 |
-
|
2656 |
|
2657 |
```python
|
2658 |
from FlagEmbedding import FlagModel
|
2659 |
-
|
|
|
2660 |
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
2661 |
-
|
2662 |
-
|
2663 |
-
|
2664 |
-
|
|
|
|
|
|
|
2665 |
queries = ['query_1', 'query_2']
|
2666 |
-
passages = ["
|
2667 |
q_embeddings = model.encode_queries(queries)
|
2668 |
p_embeddings = model.encode(passages)
|
2669 |
scores = q_embeddings @ p_embeddings.T
|
2670 |
```
|
2671 |
-
|
2672 |
|
2673 |
-
FlagModel will use all available GPUs when encoding
|
|
|
2674 |
|
2675 |
|
2676 |
-
|
2677 |
|
2678 |
-
|
2679 |
|
2680 |
```
|
2681 |
pip install -U sentence-transformers
|
2682 |
```
|
2683 |
```python
|
2684 |
from sentence_transformers import SentenceTransformer
|
2685 |
-
|
|
|
2686 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
2687 |
-
|
2688 |
-
|
|
|
|
|
2689 |
```
|
2690 |
-
For retrieval task,
|
2691 |
-
each query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
|
|
2692 |
```python
|
2693 |
from sentence_transformers import SentenceTransformer
|
2694 |
-
queries = [
|
2695 |
-
passages = ["
|
2696 |
instruction = "为这个句子生成表示以用于检索相关文章:"
|
|
|
2697 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
2698 |
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
2699 |
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
2700 |
scores = q_embeddings @ p_embeddings.T
|
2701 |
```
|
2702 |
|
2703 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2704 |
|
2705 |
-
|
|
|
|
|
2706 |
|
2707 |
```python
|
2708 |
from transformers import AutoTokenizer, AutoModel
|
2709 |
import torch
|
2710 |
# Sentences we want sentence embeddings for
|
2711 |
sentences = ["样例数据-1", "样例数据-2"]
|
|
|
2712 |
# Load model from HuggingFace Hub
|
2713 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
2714 |
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
|
|
|
|
2715 |
# Tokenize sentences
|
2716 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
2717 |
-
# for retrieval task, add an instruction to query
|
2718 |
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
|
|
2719 |
# Compute token embeddings
|
2720 |
with torch.no_grad():
|
2721 |
model_output = model(**encoded_input)
|
@@ -2726,21 +235,65 @@ sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, di
|
|
2726 |
print("Sentence embeddings:", sentence_embeddings)
|
2727 |
```
|
2728 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2729 |
|
2730 |
## Evaluation
|
|
|
2731 |
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
2732 |
-
|
2733 |
|
2734 |
- **MTEB**:
|
2735 |
|
2736 |
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
2737 |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
2738 |
-
| [
|
2739 |
-
| [
|
|
|
|
|
|
|
2740 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
2741 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
2742 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
2743 |
-
| [
|
2744 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
2745 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
2746 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
@@ -2749,85 +302,80 @@ More details and evaluation tools see our [scripts](https://github.com/FlagOpen/
|
|
2749 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
2750 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
2751 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
2752 |
-
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 384 | 512 | 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 |
|
2753 |
-
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 384 | 512 | 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 |
|
2754 |
-
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 768 | 512 | 56.00 | 41.88 | 41.1 | 82.54 | 53.14 | 76.51 | 30.36 | 66.68 |
|
2755 |
-
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 768 | 512 | 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 |
|
2756 |
|
2757 |
|
2758 |
|
2759 |
- **C-MTEB**:
|
2760 |
-
We create
|
2761 |
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
2762 |
|
2763 |
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
2764 |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
2765 |
-
| [**bge-large-zh**](https://huggingface.co/BAAI/bge-large-zh) | 1024 |
|
2766 |
-
| [
|
2767 |
-
| [
|
2768 |
-
| [
|
2769 |
-
| [
|
2770 |
-
| [
|
2771 |
-
| [
|
2772 |
-
| [
|
2773 |
-
| [
|
2774 |
-
| [
|
2775 |
-
|
2776 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2777 |
|
2778 |
## Train
|
2779 |
-
This section will introduce the way we used to train the general embedding.
|
2780 |
-
The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md),
|
2781 |
-
and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md).
|
2782 |
-
|
2783 |
|
2784 |
-
|
2785 |
-
We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
|
2786 |
-
which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
|
2787 |
-
The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
|
2788 |
-
In retromae, the mask ratio of encoder and decoder are 0.3, and 0.5 respectively.
|
2789 |
-
We used the AdamW optimizer and the learning rate is 2e-5.
|
2790 |
|
2791 |
-
|
2792 |
-
-
|
2793 |
-
|
2794 |
-
|
2795 |
-
|
2796 |
-
- Chinese:
|
2797 |
-
- Subset of [wudao](https://github.com/BAAI-WuDao/Data)
|
2798 |
-
- [baidu-baike](https://baike.baidu.com/)
|
2799 |
|
2800 |
|
2801 |
-
**2. Finetune**
|
2802 |
-
We fine-tune the model using a contrastive objective.
|
2803 |
-
The format of input data is a triple`(query, positive, negative)`.
|
2804 |
-
Besides the negative in the triple, we also adopt in-batch negatives strategy.
|
2805 |
-
We employ the cross-device negatives sharing method to share negatives among different GPUs,
|
2806 |
-
which can dramatically **increase the number of negatives**.
|
2807 |
|
2808 |
-
|
2809 |
-
We used the AdamW optimizer and the learning rate is 1e-5.
|
2810 |
-
The temperature for contrastive loss is 0.01.
|
2811 |
|
2812 |
-
|
2813 |
-
|
2814 |
-
|
2815 |
-
|
|
|
|
|
2816 |
|
2817 |
|
2818 |
-
|
2819 |
-
|
|
|
2820 |
|
2821 |
-
**Training data**:
|
2822 |
|
2823 |
-
|
2824 |
-
|
2825 |
-
- For chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE) and so on.
|
2826 |
|
2827 |
-
**The data collection is to be released in the future.**
|
2828 |
|
2829 |
-
We will continually update the embedding models and training codes,
|
2830 |
-
hoping to promote the development of the embedding model community.
|
2831 |
|
2832 |
-
## License
|
2833 |
-
FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
- transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
license: mit
|
9 |
language:
|
10 |
- en
|
|
|
11 |
---
|
12 |
|
13 |
+
|
14 |
<h1 align="center">FlagEmbedding</h1>
|
15 |
|
16 |
|
|
|
20 |
<a href=#usage>Usage</a> |
|
21 |
<a href="#evaluation">Evaluation</a> |
|
22 |
<a href="#train">Train</a> |
|
23 |
+
<a href="#contact">Contact</a> |
|
24 |
<a href="#license">License</a>
|
25 |
<p>
|
26 |
</h4>
|
27 |
|
28 |
+
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
29 |
+
|
30 |
+
|
31 |
|
32 |
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
33 |
|
|
|
35 |
And it also can be used in vector databases for LLMs.
|
36 |
|
37 |
************* 🌟**Updates**🌟 *************
|
38 |
+
- 09/12/2023: New Release:
|
39 |
+
- **New reranker model**: release a cross-encoder model bge-reranker-base, which is more powerful than embedding model. We recommend to use/fine-tune it to re-rank top-k documents returned by embedding models.
|
40 |
+
- **update embedding model**: release bge-*-v1.5 embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
|
41 |
+
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
|
42 |
+
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
|
43 |
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
44 |
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
45 |
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
|
|
49 |
|
50 |
`bge` is short for `BAAI general embedding`.
|
51 |
|
52 |
+
| Model | Language | | Description | query instruction for retrieval\* |
|
53 |
+
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
|
54 |
+
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
|
55 |
+
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
|
56 |
+
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
57 |
+
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
58 |
+
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
|
59 |
+
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
60 |
+
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相���文章:` |
|
61 |
+
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
|
62 |
+
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
63 |
+
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
|
64 |
+
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
65 |
+
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
66 |
+
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
67 |
+
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
68 |
+
|
69 |
+
|
70 |
+
\*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
|
71 |
+
|
72 |
+
\**: To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
|
73 |
+
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
|
74 |
+
|
75 |
+
|
76 |
+
## Frequently asked questions
|
77 |
+
|
78 |
+
<details>
|
79 |
+
<summary>1. How to fine-tune bge embedding model?</summary>
|
80 |
+
|
81 |
+
<!-- ### How to fine-tune bge embedding model? -->
|
82 |
+
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
|
83 |
+
Some suggestions:
|
84 |
+
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#data-format), which can improve the retrieval performance.
|
85 |
+
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
|
86 |
+
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
|
87 |
+
|
88 |
+
|
89 |
+
</details>
|
90 |
+
|
91 |
+
<details>
|
92 |
+
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
|
93 |
+
|
94 |
+
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
|
95 |
+
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
|
96 |
+
|
97 |
+
Since we finetune the models by contrastive learning with a temperature of 0.01,
|
98 |
+
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
|
99 |
+
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
|
100 |
|
101 |
+
For downstream tasks, such as passage retrieval or semantic similarity,
|
102 |
+
**what matters is the relative order of the scores, not the absolute value.**
|
103 |
+
If you need to filter similar sentences based on a similarity threshold,
|
104 |
+
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
|
105 |
+
|
106 |
+
</details>
|
107 |
+
|
108 |
+
<details>
|
109 |
+
<summary>3. When does the query instruction need to be used</summary>
|
110 |
+
|
111 |
+
<!-- ### When does the query instruction need to be used -->
|
112 |
+
|
113 |
+
For a retrieval task that uses short queries to find long related documents,
|
114 |
+
it is recommended to add instructions for these short queries.
|
115 |
+
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
|
116 |
+
In all cases, the documents/passages do not need to add the instruction.
|
117 |
+
|
118 |
+
</details>
|
119 |
|
120 |
|
121 |
## Usage
|
122 |
|
123 |
+
### Usage for Embedding Model
|
124 |
+
|
125 |
+
Here are some examples for using `bge` models with
|
126 |
+
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
|
127 |
+
|
128 |
+
#### Using FlagEmbedding
|
129 |
```
|
130 |
pip install -U FlagEmbedding
|
131 |
```
|
132 |
+
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
|
133 |
|
134 |
```python
|
135 |
from FlagEmbedding import FlagModel
|
136 |
+
sentences_1 = ["样例数据-1", "样例数据-2"]
|
137 |
+
sentences_2 = ["样例数据-3", "样例数据-4"]
|
138 |
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
139 |
+
embeddings_1 = model.encode(sentences_1)
|
140 |
+
embeddings_2 = model.encode(sentences_2)
|
141 |
+
similarity = embeddings_1 @ embeddings_2.T
|
142 |
+
print(similarity)
|
143 |
+
|
144 |
+
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
|
145 |
+
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
|
146 |
queries = ['query_1', 'query_2']
|
147 |
+
passages = ["样例文档-1", "样例文档-2"]
|
148 |
q_embeddings = model.encode_queries(queries)
|
149 |
p_embeddings = model.encode(passages)
|
150 |
scores = q_embeddings @ p_embeddings.T
|
151 |
```
|
152 |
+
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
|
153 |
|
154 |
+
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
|
155 |
+
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
|
156 |
|
157 |
|
158 |
+
#### Using Sentence-Transformers
|
159 |
|
160 |
+
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
|
161 |
|
162 |
```
|
163 |
pip install -U sentence-transformers
|
164 |
```
|
165 |
```python
|
166 |
from sentence_transformers import SentenceTransformer
|
167 |
+
sentences_1 = ["样例数据-1", "样例数据-2"]
|
168 |
+
sentences_2 = ["样例数据-3", "样例数据-4"]
|
169 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
170 |
+
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
171 |
+
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
172 |
+
similarity = embeddings_1 @ embeddings_2.T
|
173 |
+
print(similarity)
|
174 |
```
|
175 |
+
For s2p(short query to long passage) retrieval task,
|
176 |
+
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
177 |
+
But the instruction is not needed for passages.
|
178 |
```python
|
179 |
from sentence_transformers import SentenceTransformer
|
180 |
+
queries = ['query_1', 'query_2']
|
181 |
+
passages = ["样例文档-1", "样例文档-2"]
|
182 |
instruction = "为这个句子生成表示以用于检索相关文章:"
|
183 |
+
|
184 |
model = SentenceTransformer('BAAI/bge-large-zh')
|
185 |
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
186 |
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
187 |
scores = q_embeddings @ p_embeddings.T
|
188 |
```
|
189 |
|
190 |
+
#### Using Langchain
|
191 |
+
|
192 |
+
You can use `bge` in langchain like this:
|
193 |
+
```python
|
194 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
195 |
+
model_name = "BAAI/bge-small-en"
|
196 |
+
model_kwargs = {'device': 'cuda'}
|
197 |
+
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
198 |
+
model = HuggingFaceBgeEmbeddings(
|
199 |
+
model_name=model_name,
|
200 |
+
model_kwargs=model_kwargs,
|
201 |
+
encode_kwargs=encode_kwargs,
|
202 |
+
query_instruction="为这个句子生成表示以用于检索相关文章:"
|
203 |
+
)
|
204 |
+
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
|
205 |
+
```
|
206 |
+
|
207 |
|
208 |
+
#### Using HuggingFace Transformers
|
209 |
+
|
210 |
+
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
|
211 |
|
212 |
```python
|
213 |
from transformers import AutoTokenizer, AutoModel
|
214 |
import torch
|
215 |
# Sentences we want sentence embeddings for
|
216 |
sentences = ["样例数据-1", "样例数据-2"]
|
217 |
+
|
218 |
# Load model from HuggingFace Hub
|
219 |
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
|
220 |
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
|
221 |
+
model.eval()
|
222 |
+
|
223 |
# Tokenize sentences
|
224 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
225 |
+
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
|
226 |
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
227 |
+
|
228 |
# Compute token embeddings
|
229 |
with torch.no_grad():
|
230 |
model_output = model(**encoded_input)
|
|
|
235 |
print("Sentence embeddings:", sentence_embeddings)
|
236 |
```
|
237 |
|
238 |
+
### Usage for Reranker
|
239 |
+
|
240 |
+
You can get a relevance score by inputting query and passage to the reranker.
|
241 |
+
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
|
242 |
+
|
243 |
+
|
244 |
+
#### Using FlagEmbedding
|
245 |
+
```
|
246 |
+
pip install -U FlagEmbedding
|
247 |
+
```
|
248 |
+
|
249 |
+
Get relevance score:
|
250 |
+
```python
|
251 |
+
from FlagEmbedding import FlagReranker
|
252 |
+
reranker = FlagReranker('BAAI/bge-reranker-base', use_fp16=True) #use fp16 can speed up computing
|
253 |
+
|
254 |
+
score = reranker.compute_score(['query', 'passage'])
|
255 |
+
print(score)
|
256 |
+
|
257 |
+
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
258 |
+
print(scores)
|
259 |
+
```
|
260 |
+
|
261 |
+
|
262 |
+
#### Using Huggingface transformers
|
263 |
+
|
264 |
+
```python
|
265 |
+
import torch
|
266 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, BatchEncoding, PreTrainedTokenizerFast
|
267 |
+
|
268 |
+
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-base')
|
269 |
+
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
|
270 |
+
model.eval()
|
271 |
+
|
272 |
+
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
273 |
+
with torch.no_grad():
|
274 |
+
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
275 |
+
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
276 |
+
print(scores)
|
277 |
+
```
|
278 |
|
279 |
## Evaluation
|
280 |
+
|
281 |
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
282 |
+
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
|
283 |
|
284 |
- **MTEB**:
|
285 |
|
286 |
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
287 |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
288 |
+
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
|
289 |
+
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
|
290 |
+
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
|
291 |
+
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
|
292 |
+
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
|
293 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
294 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
295 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
296 |
+
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
|
297 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
298 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
299 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
|
|
302 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
303 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
304 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
|
|
|
|
|
|
|
|
305 |
|
306 |
|
307 |
|
308 |
- **C-MTEB**:
|
309 |
+
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
310 |
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
311 |
|
312 |
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
313 |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
314 |
+
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
|
315 |
+
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
|
316 |
+
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
|
317 |
+
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
|
318 |
+
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
|
319 |
+
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
|
320 |
+
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
|
321 |
+
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
|
322 |
+
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
|
323 |
+
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
|
324 |
+
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
|
325 |
+
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
|
326 |
+
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
|
327 |
+
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
|
328 |
+
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
|
329 |
+
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
|
330 |
+
|
331 |
+
|
332 |
+
- **Reranking**:
|
333 |
+
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
|
334 |
+
|
335 |
+
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MmarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|
336 |
+
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
337 |
+
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
|
338 |
+
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
|
339 |
+
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
|
340 |
+
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
|
341 |
+
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
|
342 |
+
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
|
343 |
+
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
|
344 |
+
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
|
345 |
+
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
|
346 |
+
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
|
347 |
+
|
348 |
+
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval task
|
349 |
|
350 |
## Train
|
|
|
|
|
|
|
|
|
351 |
|
352 |
+
### BAAI Embedding
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
+
We pre-train the models using retromae and train them on large-scale pairs data using contrastive learning.
|
355 |
+
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
|
356 |
+
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
|
357 |
+
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
|
358 |
+
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
|
|
|
|
|
|
359 |
|
360 |
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
+
### BGE Reranker
|
|
|
|
|
363 |
|
364 |
+
Cross-encoder will perform full-attention over the input pair,
|
365 |
+
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
|
366 |
+
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
|
367 |
+
We train the cross-encoder on a multilingual pair data,
|
368 |
+
The data format is the same as embedding model, so you can fine-tune it easily following our example.
|
369 |
+
More details pelease refer to [./FlagEmbedding/reranker/README.md](./FlagEmbedding/reranker/README.md)
|
370 |
|
371 |
|
372 |
+
## Contact
|
373 |
+
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
|
374 |
+
You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
|
375 |
|
|
|
376 |
|
377 |
+
## License
|
378 |
+
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
|
|
379 |
|
|
|
380 |
|
|
|
|
|
381 |
|
|
|
|