Upload config.json with huggingface_hub
Browse files- config.json +37 -359
config.json
CHANGED
@@ -1,360 +1,38 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
```
|
40 |
-
pip install -U FlagEmbedding
|
41 |
-
```
|
42 |
-
|
43 |
-
#### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
|
44 |
-
|
45 |
-
Get relevance scores (higher scores indicate more relevance):
|
46 |
-
|
47 |
-
```python
|
48 |
-
from FlagEmbedding import FlagReranker
|
49 |
-
reranker = FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
50 |
-
|
51 |
-
score = reranker.compute_score(['query', 'passage'])
|
52 |
-
print(score) # -5.65234375
|
53 |
-
|
54 |
-
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
|
55 |
-
score = reranker.compute_score(['query', 'passage'], normalize=True)
|
56 |
-
print(score) # 0.003497010252573502
|
57 |
-
|
58 |
-
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
59 |
-
print(scores) # [-8.1875, 5.26171875]
|
60 |
-
|
61 |
-
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
|
62 |
-
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
|
63 |
-
print(scores) # [0.00027803096387751553, 0.9948403768236574]
|
64 |
-
```
|
65 |
-
|
66 |
-
#### For LLM-based reranker
|
67 |
-
|
68 |
-
```python
|
69 |
-
from FlagEmbedding import FlagLLMReranker
|
70 |
-
reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # Setting use_bf16 to True speeds up computation with a slight performance degradation
|
71 |
-
|
72 |
-
score = reranker.compute_score(['query', 'passage'])
|
73 |
-
print(score) # 2.15625
|
74 |
-
|
75 |
-
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
76 |
-
print(scores) # [-0.84765625, 10.625]
|
77 |
-
```
|
78 |
-
|
79 |
-
#### For LLM-based layerwise reranker
|
80 |
-
|
81 |
-
```python
|
82 |
-
from FlagEmbedding import LayerWiseFlagLLMReranker
|
83 |
-
reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # Setting use_bf16 to True speeds up computation with a slight performance degradation
|
84 |
-
|
85 |
-
score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
|
86 |
-
print(score) # -7.03125
|
87 |
-
|
88 |
-
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], cutoff_layers=[28])
|
89 |
-
print(scores) # [-10.0, 1.8203125]
|
90 |
-
```
|
91 |
-
|
92 |
-
### Using Huggingface transformers
|
93 |
-
|
94 |
-
#### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
|
95 |
-
|
96 |
-
Get relevance scores (higher scores indicate more relevance):
|
97 |
-
|
98 |
-
```python
|
99 |
-
import torch
|
100 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
101 |
-
|
102 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-m3')
|
103 |
-
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-v2-m3')
|
104 |
-
model.eval()
|
105 |
-
|
106 |
-
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
107 |
-
with torch.no_grad():
|
108 |
-
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
109 |
-
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
110 |
-
print(scores)
|
111 |
-
```
|
112 |
-
|
113 |
-
#### For LLM-based reranker
|
114 |
-
|
115 |
-
```python
|
116 |
-
import torch
|
117 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
118 |
-
|
119 |
-
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
|
120 |
-
if prompt is None:
|
121 |
-
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
|
122 |
-
sep = "\n"
|
123 |
-
prompt_inputs = tokenizer(prompt,
|
124 |
-
return_tensors=None,
|
125 |
-
add_special_tokens=False)['input_ids']
|
126 |
-
sep_inputs = tokenizer(sep,
|
127 |
-
return_tensors=None,
|
128 |
-
add_special_tokens=False)['input_ids']
|
129 |
-
inputs = []
|
130 |
-
for query, passage in pairs:
|
131 |
-
query_inputs = tokenizer(f'A: {query}',
|
132 |
-
return_tensors=None,
|
133 |
-
add_special_tokens=False,
|
134 |
-
max_length=max_length * 3 // 4,
|
135 |
-
truncation=True)
|
136 |
-
passage_inputs = tokenizer(f'B: {passage}',
|
137 |
-
return_tensors=None,
|
138 |
-
add_special_tokens=False,
|
139 |
-
max_length=max_length,
|
140 |
-
truncation=True)
|
141 |
-
item = tokenizer.prepare_for_model(
|
142 |
-
[tokenizer.bos_token_id] + query_inputs['input_ids'],
|
143 |
-
sep_inputs + passage_inputs['input_ids'],
|
144 |
-
truncation='only_second',
|
145 |
-
max_length=max_length,
|
146 |
-
padding=False,
|
147 |
-
return_attention_mask=False,
|
148 |
-
return_token_type_ids=False,
|
149 |
-
add_special_tokens=False
|
150 |
-
)
|
151 |
-
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
|
152 |
-
item['attention_mask'] = [1] * len(item['input_ids'])
|
153 |
-
inputs.append(item)
|
154 |
-
return tokenizer.pad(
|
155 |
-
inputs,
|
156 |
-
padding=True,
|
157 |
-
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
|
158 |
-
pad_to_multiple_of=8,
|
159 |
-
return_tensors='pt',
|
160 |
-
)
|
161 |
-
|
162 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-gemma')
|
163 |
-
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-gemma')
|
164 |
-
yes_loc = tokenizer('Yes', add_special_tokens=False)['input_ids'][0]
|
165 |
-
model.eval()
|
166 |
-
|
167 |
-
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
168 |
-
with torch.no_grad():
|
169 |
-
inputs = get_inputs(pairs, tokenizer)
|
170 |
-
scores = model(**inputs, return_dict=True).logits[:, -1, yes_loc].view(-1, ).float()
|
171 |
-
print(scores)
|
172 |
-
```
|
173 |
-
|
174 |
-
#### For LLM-based layerwise reranker
|
175 |
-
|
176 |
-
```python
|
177 |
-
import torch
|
178 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
179 |
-
|
180 |
-
def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
|
181 |
-
if prompt is None:
|
182 |
-
prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
|
183 |
-
sep = "\n"
|
184 |
-
prompt_inputs = tokenizer(prompt,
|
185 |
-
return_tensors=None,
|
186 |
-
add_special_tokens=False)['input_ids']
|
187 |
-
sep_inputs = tokenizer(sep,
|
188 |
-
return_tensors=None,
|
189 |
-
add_special_tokens=False)['input_ids']
|
190 |
-
inputs = []
|
191 |
-
for query, passage in pairs:
|
192 |
-
query_inputs = tokenizer(f'A: {query}',
|
193 |
-
return_tensors=None,
|
194 |
-
add_special_tokens=False,
|
195 |
-
max_length=max_length * 3 // 4,
|
196 |
-
truncation=True)
|
197 |
-
passage_inputs = tokenizer(f'B: {passage}',
|
198 |
-
return_tensors=None,
|
199 |
-
add_special_tokens=False,
|
200 |
-
max_length=max_length,
|
201 |
-
truncation=True)
|
202 |
-
item = tokenizer.prepare_for_model(
|
203 |
-
[tokenizer.bos_token_id] + query_inputs['input_ids'],
|
204 |
-
sep_inputs + passage_inputs['input_ids'],
|
205 |
-
truncation='only_second',
|
206 |
-
max_length=max_length,
|
207 |
-
padding=False,
|
208 |
-
return_attention_mask=False,
|
209 |
-
return_token_type_ids=False,
|
210 |
-
add_special_tokens=False
|
211 |
-
)
|
212 |
-
item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
|
213 |
-
item['attention_mask'] = [1] * len(item['input_ids'])
|
214 |
-
inputs.append(item)
|
215 |
-
return tokenizer.pad(
|
216 |
-
inputs,
|
217 |
-
padding=True,
|
218 |
-
max_length=max_length + len(sep_inputs) + len(prompt_inputs),
|
219 |
-
pad_to_multiple_of=8,
|
220 |
-
return_tensors='pt',
|
221 |
-
)
|
222 |
-
|
223 |
-
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
224 |
-
model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
|
225 |
-
model = model.to('cuda')
|
226 |
-
model.eval()
|
227 |
-
|
228 |
-
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
229 |
-
with torch.no_grad():
|
230 |
-
inputs = get_inputs(pairs, tokenizer).to(model.device)
|
231 |
-
all_scores = model(**inputs, return_dict=True, cutoff_layers=[28])
|
232 |
-
all_scores = [scores[:, -1].view(-1, ).float() for scores in all_scores[0]]
|
233 |
-
print(all_scores)
|
234 |
-
```
|
235 |
-
|
236 |
-
## Fine-tune
|
237 |
-
|
238 |
-
You can fine-tune the reranker with the following code:
|
239 |
-
|
240 |
-
**For llm-based reranker**
|
241 |
-
|
242 |
-
```shell
|
243 |
-
torchrun --nproc_per_node {number of gpus} \
|
244 |
-
-m FlagEmbedding.llm_reranker.finetune_for_instruction.run \
|
245 |
-
--output_dir {path to save model} \
|
246 |
-
--model_name_or_path BAAI/bge-reranker-v2-gemma \
|
247 |
-
--train_data ./toy_finetune_data.jsonl \
|
248 |
-
--learning_rate 2e-4 \
|
249 |
-
--num_train_epochs 1 \
|
250 |
-
--per_device_train_batch_size 1 \
|
251 |
-
--gradient_accumulation_steps 16 \
|
252 |
-
--dataloader_drop_last True \
|
253 |
-
--query_max_len 512 \
|
254 |
-
--passage_max_len 512 \
|
255 |
-
--train_group_size 16 \
|
256 |
-
--logging_steps 1 \
|
257 |
-
--save_steps 2000 \
|
258 |
-
--save_total_limit 50 \
|
259 |
-
--ddp_find_unused_parameters False \
|
260 |
-
--gradient_checkpointing \
|
261 |
-
--deepspeed stage1.json \
|
262 |
-
--warmup_ratio 0.1 \
|
263 |
-
--bf16 \
|
264 |
-
--use_lora True \
|
265 |
-
--lora_rank 32 \
|
266 |
-
--lora_alpha 64 \
|
267 |
-
--use_flash_attn True \
|
268 |
-
--target_modules q_proj k_proj v_proj o_proj
|
269 |
-
```
|
270 |
-
|
271 |
-
**For llm-based layerwise reranker**
|
272 |
-
|
273 |
-
```shell
|
274 |
-
torchrun --nproc_per_node {number of gpus} \
|
275 |
-
-m FlagEmbedding.llm_reranker.finetune_for_layerwise.run \
|
276 |
-
--output_dir {path to save model} \
|
277 |
-
--model_name_or_path BAAI/bge-reranker-v2-minicpm-layerwise \
|
278 |
-
--train_data ./toy_finetune_data.jsonl \
|
279 |
-
--learning_rate 2e-4 \
|
280 |
-
--num_train_epochs 1 \
|
281 |
-
--per_device_train_batch_size 1 \
|
282 |
-
--gradient_accumulation_steps 16 \
|
283 |
-
--dataloader_drop_last True \
|
284 |
-
--query_max_len 512 \
|
285 |
-
--passage_max_len 512 \
|
286 |
-
--train_group_size 16 \
|
287 |
-
--logging_steps 1 \
|
288 |
-
--save_steps 2000 \
|
289 |
-
--save_total_limit 50 \
|
290 |
-
--ddp_find_unused_parameters False \
|
291 |
-
--gradient_checkpointing \
|
292 |
-
--deepspeed stage1.json \
|
293 |
-
--warmup_ratio 0.1 \
|
294 |
-
--bf16 \
|
295 |
-
--use_lora True \
|
296 |
-
--lora_rank 32 \
|
297 |
-
--lora_alpha 64 \
|
298 |
-
--use_flash_attn True \
|
299 |
-
--target_modules q_proj k_proj v_proj o_proj \
|
300 |
-
--start_layer 8 \
|
301 |
-
--head_multi True \
|
302 |
-
--head_type simple
|
303 |
-
```
|
304 |
-
|
305 |
-
Our rerankers are initialized from [google/gemma-2b](https://huggingface.co/google/gemma-2b) (for llm-based reranker) and [openbmb/MiniCPM-2B-dpo-fp16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-fp16/tree/main) (for llm-based layerwise reranker), and we train it on a mixture of multilingual datasets:
|
306 |
-
|
307 |
-
- [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data)
|
308 |
-
- [quora train data](https://huggingface.co/datasets/quora)
|
309 |
-
- [fever train data](https://fever.ai/dataset/fever.html)
|
310 |
-
|
311 |
-
## Evaluation
|
312 |
-
|
313 |
-
- llama-index.
|
314 |
-
|
315 |
-
![image-20240317193909373](./evaluation/llama-index.png)
|
316 |
-
|
317 |
-
|
318 |
-
- BEIR.
|
319 |
-
|
320 |
-
rereank the top 100 results from bge-en-v1.5 large.
|
321 |
-
|
322 |
-
![image-20240317174633333](./evaluation/BEIR-bge-en-v1.5.png)
|
323 |
-
|
324 |
-
rereank the top 100 results from e5 mistral 7b instruct.
|
325 |
-
|
326 |
-
![image-20240317172949713](./evaluation/BEIR-e5-mistral.png)
|
327 |
-
|
328 |
-
- CMTEB-retrieval.
|
329 |
-
It rereank the top 100 results from bge-zh-v1.5 large.
|
330 |
-
|
331 |
-
![image-20240317173026235](./evaluation/CMTEB-retrieval-bge-zh-v1.5.png)
|
332 |
-
|
333 |
-
- miracl (multi-language).
|
334 |
-
It rereank the top 100 results from bge-m3.
|
335 |
-
|
336 |
-
![image-20240317173117639](./evaluation/miracl-bge-m3.png)
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
## Citation
|
341 |
-
|
342 |
-
If you find this repository useful, please consider giving a star :star: and citation
|
343 |
-
|
344 |
-
```
|
345 |
-
@misc{li2023making,
|
346 |
-
title={Making Large Language Models A Better Foundation For Dense Retrieval},
|
347 |
-
author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
|
348 |
-
year={2023},
|
349 |
-
eprint={2312.15503},
|
350 |
-
archivePrefix={arXiv},
|
351 |
-
primaryClass={cs.CL}
|
352 |
}
|
353 |
-
@misc{chen2024bge,
|
354 |
-
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
|
355 |
-
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
|
356 |
-
year={2024},
|
357 |
-
eprint={2402.03216},
|
358 |
-
archivePrefix={arXiv},
|
359 |
-
primaryClass={cs.CL}
|
360 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-reranker-v2-minicpm-layerwise",
|
3 |
+
"architectures": [
|
4 |
+
"LayerWiseMiniCPMForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "BAAI/bge-reranker-v2-minicpm-layerwise--configuration_minicpm_reranker.LayerWiseMiniCPMConfig",
|
10 |
+
"AutoModel": "BAAI/bge-reranker-v2-minicpm-layerwise--modeling_minicpm_reranker.LayerWiseMiniCPMModel",
|
11 |
+
"AutoModelForCausalLM": "BAAI/bge-reranker-v2-minicpm-layerwise--modeling_minicpm_reranker.LayerWiseMiniCPMForCausalLM"
|
12 |
+
},
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"dim_model_base": 256,
|
15 |
+
"eos_token_id": 2,
|
16 |
+
"head_multi": true,
|
17 |
+
"head_type": "simple",
|
18 |
+
"hidden_act": "silu",
|
19 |
+
"hidden_size": 2304,
|
20 |
+
"initializer_range": 0.1,
|
21 |
+
"intermediate_size": 5760,
|
22 |
+
"max_position_embeddings": 2048,
|
23 |
+
"model_type": "minicpm",
|
24 |
+
"num_attention_heads": 36,
|
25 |
+
"num_hidden_layers": 40,
|
26 |
+
"num_key_value_heads": 36,
|
27 |
+
"pretraining_tp": 1,
|
28 |
+
"rms_norm_eps": 1e-05,
|
29 |
+
"rope_scaling": null,
|
30 |
+
"rope_theta": 10000.0,
|
31 |
+
"scale_depth": 1.4,
|
32 |
+
"scale_emb": 12,
|
33 |
+
"start_layer": 8,
|
34 |
+
"torch_dtype": "bfloat16",
|
35 |
+
"transformers_version": "4.38.1",
|
36 |
+
"use_cache": false,
|
37 |
+
"vocab_size": 122753
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|