Shitao commited on
Commit
b5d77ed
1 Parent(s): 2b0acf7

Upload config.json with huggingface_hub

Browse files
Files changed (1) hide show
  1. config.json +37 -359
config.json CHANGED
@@ -1,360 +1,38 @@
1
- # Reranker
2
-
3
- **More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/tree/master).**
4
-
5
- - [Model List](#model-list)
6
- - [Usage](#usage)
7
- - [Fine-tuning](#fine-tune)
8
- - [Evaluation](#evaluation)
9
- - [Citation](#citation)
10
-
11
- Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
12
- You can get a relevance score by inputting query and passage to the reranker.
13
- And the score can be mapped to a float value in [0,1] by sigmoid function.
14
-
15
-
16
- ## Model List
17
-
18
- | Model | Base model | Language | layerwise | feature |
19
- |:--------------------------------------------------------------------------|:--------:|:-----------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|
20
- | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
21
- | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | [xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) | Chinese and English | - | Lightweight reranker model, easy to deploy, with fast inference. |
22
- | [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | [bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | - | Lightweight reranker model, possesses strong multilingual capabilities, easy to deploy, with fast inference. |
23
- | [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | [google/gemma-2b](https://huggingface.co/google/gemma-2b) | Multilingual | - | Suitable for multilingual contexts, performs well in both English proficiency and multilingual capabilities. |
24
- | [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) | [openbmb/MiniCPM-2B-dpo-fp16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-fp16/tree/main) | Multilingual | 8-40 | Suitable for multilingual contexts, performs well in both English and Chinese proficiency, allows freedom to select layers for output, facilitating accelerated inference. |
25
-
26
-
27
- You can select the model according your senario and resource.
28
- - For **multilingual**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma)
29
-
30
- - For **Chinese or English**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise).
31
-
32
- - For **efficiency**, utilize [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) and the low layer of [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise).
33
-
34
- - For better performance, recommand [BAAI/bge-reranker-v2-minicpm-layerwise](https://huggingface.co/BAAI/bge-reranker-v2-minicpm-layerwise) and [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma)
35
-
36
- ## Usage
37
- ### Using FlagEmbedding
38
-
39
- ```
40
- pip install -U FlagEmbedding
41
- ```
42
-
43
- #### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
44
-
45
- Get relevance scores (higher scores indicate more relevance):
46
-
47
- ```python
48
- from FlagEmbedding import FlagReranker
49
- reranker = FlagReranker('BAAI/bge-reranker-v2-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
50
-
51
- score = reranker.compute_score(['query', 'passage'])
52
- print(score) # -5.65234375
53
-
54
- # You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
55
- score = reranker.compute_score(['query', 'passage'], normalize=True)
56
- print(score) # 0.003497010252573502
57
-
58
- scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
59
- print(scores) # [-8.1875, 5.26171875]
60
-
61
- # You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
62
- scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
63
- print(scores) # [0.00027803096387751553, 0.9948403768236574]
64
- ```
65
-
66
- #### For LLM-based reranker
67
-
68
- ```python
69
- from FlagEmbedding import FlagLLMReranker
70
- reranker = FlagLLMReranker('BAAI/bge-reranker-v2-gemma', use_bf16=True) # Setting use_bf16 to True speeds up computation with a slight performance degradation
71
-
72
- score = reranker.compute_score(['query', 'passage'])
73
- print(score) # 2.15625
74
-
75
- scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
76
- print(scores) # [-0.84765625, 10.625]
77
- ```
78
-
79
- #### For LLM-based layerwise reranker
80
-
81
- ```python
82
- from FlagEmbedding import LayerWiseFlagLLMReranker
83
- reranker = LayerWiseFlagLLMReranker('BAAI/bge-reranker-v2-minicpm-layerwise', use_bf16=True) # Setting use_bf16 to True speeds up computation with a slight performance degradation
84
-
85
- score = reranker.compute_score(['query', 'passage'], cutoff_layers=[28]) # Adjusting 'cutoff_layers' to pick which layers are used for computing the score.
86
- print(score) # -7.03125
87
-
88
- scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], cutoff_layers=[28])
89
- print(scores) # [-10.0, 1.8203125]
90
- ```
91
-
92
- ### Using Huggingface transformers
93
-
94
- #### For normal reranker (bge-reranker-base / bge-reranker-large / bge-reranker-v2-m3 )
95
-
96
- Get relevance scores (higher scores indicate more relevance):
97
-
98
- ```python
99
- import torch
100
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
101
-
102
- tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-m3')
103
- model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-v2-m3')
104
- model.eval()
105
-
106
- pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
107
- with torch.no_grad():
108
- inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
109
- scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
110
- print(scores)
111
- ```
112
-
113
- #### For LLM-based reranker
114
-
115
- ```python
116
- import torch
117
- from transformers import AutoModelForCausalLM, AutoTokenizer
118
-
119
- def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
120
- if prompt is None:
121
- prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
122
- sep = "\n"
123
- prompt_inputs = tokenizer(prompt,
124
- return_tensors=None,
125
- add_special_tokens=False)['input_ids']
126
- sep_inputs = tokenizer(sep,
127
- return_tensors=None,
128
- add_special_tokens=False)['input_ids']
129
- inputs = []
130
- for query, passage in pairs:
131
- query_inputs = tokenizer(f'A: {query}',
132
- return_tensors=None,
133
- add_special_tokens=False,
134
- max_length=max_length * 3 // 4,
135
- truncation=True)
136
- passage_inputs = tokenizer(f'B: {passage}',
137
- return_tensors=None,
138
- add_special_tokens=False,
139
- max_length=max_length,
140
- truncation=True)
141
- item = tokenizer.prepare_for_model(
142
- [tokenizer.bos_token_id] + query_inputs['input_ids'],
143
- sep_inputs + passage_inputs['input_ids'],
144
- truncation='only_second',
145
- max_length=max_length,
146
- padding=False,
147
- return_attention_mask=False,
148
- return_token_type_ids=False,
149
- add_special_tokens=False
150
- )
151
- item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
152
- item['attention_mask'] = [1] * len(item['input_ids'])
153
- inputs.append(item)
154
- return tokenizer.pad(
155
- inputs,
156
- padding=True,
157
- max_length=max_length + len(sep_inputs) + len(prompt_inputs),
158
- pad_to_multiple_of=8,
159
- return_tensors='pt',
160
- )
161
-
162
- tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-gemma')
163
- model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-gemma')
164
- yes_loc = tokenizer('Yes', add_special_tokens=False)['input_ids'][0]
165
- model.eval()
166
-
167
- pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
168
- with torch.no_grad():
169
- inputs = get_inputs(pairs, tokenizer)
170
- scores = model(**inputs, return_dict=True).logits[:, -1, yes_loc].view(-1, ).float()
171
- print(scores)
172
- ```
173
-
174
- #### For LLM-based layerwise reranker
175
-
176
- ```python
177
- import torch
178
- from transformers import AutoModelForCausalLM, AutoTokenizer
179
-
180
- def get_inputs(pairs, tokenizer, prompt=None, max_length=1024):
181
- if prompt is None:
182
- prompt = "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'."
183
- sep = "\n"
184
- prompt_inputs = tokenizer(prompt,
185
- return_tensors=None,
186
- add_special_tokens=False)['input_ids']
187
- sep_inputs = tokenizer(sep,
188
- return_tensors=None,
189
- add_special_tokens=False)['input_ids']
190
- inputs = []
191
- for query, passage in pairs:
192
- query_inputs = tokenizer(f'A: {query}',
193
- return_tensors=None,
194
- add_special_tokens=False,
195
- max_length=max_length * 3 // 4,
196
- truncation=True)
197
- passage_inputs = tokenizer(f'B: {passage}',
198
- return_tensors=None,
199
- add_special_tokens=False,
200
- max_length=max_length,
201
- truncation=True)
202
- item = tokenizer.prepare_for_model(
203
- [tokenizer.bos_token_id] + query_inputs['input_ids'],
204
- sep_inputs + passage_inputs['input_ids'],
205
- truncation='only_second',
206
- max_length=max_length,
207
- padding=False,
208
- return_attention_mask=False,
209
- return_token_type_ids=False,
210
- add_special_tokens=False
211
- )
212
- item['input_ids'] = item['input_ids'] + sep_inputs + prompt_inputs
213
- item['attention_mask'] = [1] * len(item['input_ids'])
214
- inputs.append(item)
215
- return tokenizer.pad(
216
- inputs,
217
- padding=True,
218
- max_length=max_length + len(sep_inputs) + len(prompt_inputs),
219
- pad_to_multiple_of=8,
220
- return_tensors='pt',
221
- )
222
-
223
- tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
224
- model = AutoModelForCausalLM.from_pretrained('BAAI/bge-reranker-v2-minicpm-layerwise', trust_remote_code=True, torch_dtype=torch.bfloat16)
225
- model = model.to('cuda')
226
- model.eval()
227
-
228
- pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
229
- with torch.no_grad():
230
- inputs = get_inputs(pairs, tokenizer).to(model.device)
231
- all_scores = model(**inputs, return_dict=True, cutoff_layers=[28])
232
- all_scores = [scores[:, -1].view(-1, ).float() for scores in all_scores[0]]
233
- print(all_scores)
234
- ```
235
-
236
- ## Fine-tune
237
-
238
- You can fine-tune the reranker with the following code:
239
-
240
- **For llm-based reranker**
241
-
242
- ```shell
243
- torchrun --nproc_per_node {number of gpus} \
244
- -m FlagEmbedding.llm_reranker.finetune_for_instruction.run \
245
- --output_dir {path to save model} \
246
- --model_name_or_path BAAI/bge-reranker-v2-gemma \
247
- --train_data ./toy_finetune_data.jsonl \
248
- --learning_rate 2e-4 \
249
- --num_train_epochs 1 \
250
- --per_device_train_batch_size 1 \
251
- --gradient_accumulation_steps 16 \
252
- --dataloader_drop_last True \
253
- --query_max_len 512 \
254
- --passage_max_len 512 \
255
- --train_group_size 16 \
256
- --logging_steps 1 \
257
- --save_steps 2000 \
258
- --save_total_limit 50 \
259
- --ddp_find_unused_parameters False \
260
- --gradient_checkpointing \
261
- --deepspeed stage1.json \
262
- --warmup_ratio 0.1 \
263
- --bf16 \
264
- --use_lora True \
265
- --lora_rank 32 \
266
- --lora_alpha 64 \
267
- --use_flash_attn True \
268
- --target_modules q_proj k_proj v_proj o_proj
269
- ```
270
-
271
- **For llm-based layerwise reranker**
272
-
273
- ```shell
274
- torchrun --nproc_per_node {number of gpus} \
275
- -m FlagEmbedding.llm_reranker.finetune_for_layerwise.run \
276
- --output_dir {path to save model} \
277
- --model_name_or_path BAAI/bge-reranker-v2-minicpm-layerwise \
278
- --train_data ./toy_finetune_data.jsonl \
279
- --learning_rate 2e-4 \
280
- --num_train_epochs 1 \
281
- --per_device_train_batch_size 1 \
282
- --gradient_accumulation_steps 16 \
283
- --dataloader_drop_last True \
284
- --query_max_len 512 \
285
- --passage_max_len 512 \
286
- --train_group_size 16 \
287
- --logging_steps 1 \
288
- --save_steps 2000 \
289
- --save_total_limit 50 \
290
- --ddp_find_unused_parameters False \
291
- --gradient_checkpointing \
292
- --deepspeed stage1.json \
293
- --warmup_ratio 0.1 \
294
- --bf16 \
295
- --use_lora True \
296
- --lora_rank 32 \
297
- --lora_alpha 64 \
298
- --use_flash_attn True \
299
- --target_modules q_proj k_proj v_proj o_proj \
300
- --start_layer 8 \
301
- --head_multi True \
302
- --head_type simple
303
- ```
304
-
305
- Our rerankers are initialized from [google/gemma-2b](https://huggingface.co/google/gemma-2b) (for llm-based reranker) and [openbmb/MiniCPM-2B-dpo-fp16](https://huggingface.co/openbmb/MiniCPM-2B-dpo-fp16/tree/main) (for llm-based layerwise reranker), and we train it on a mixture of multilingual datasets:
306
-
307
- - [bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data)
308
- - [quora train data](https://huggingface.co/datasets/quora)
309
- - [fever train data](https://fever.ai/dataset/fever.html)
310
-
311
- ## Evaluation
312
-
313
- - llama-index.
314
-
315
- ![image-20240317193909373](./evaluation/llama-index.png)
316
-
317
-
318
- - BEIR.
319
-
320
- rereank the top 100 results from bge-en-v1.5 large.
321
-
322
- ![image-20240317174633333](./evaluation/BEIR-bge-en-v1.5.png)
323
-
324
- rereank the top 100 results from e5 mistral 7b instruct.
325
-
326
- ![image-20240317172949713](./evaluation/BEIR-e5-mistral.png)
327
-
328
- - CMTEB-retrieval.
329
- It rereank the top 100 results from bge-zh-v1.5 large.
330
-
331
- ![image-20240317173026235](./evaluation/CMTEB-retrieval-bge-zh-v1.5.png)
332
-
333
- - miracl (multi-language).
334
- It rereank the top 100 results from bge-m3.
335
-
336
- ![image-20240317173117639](./evaluation/miracl-bge-m3.png)
337
-
338
-
339
-
340
- ## Citation
341
-
342
- If you find this repository useful, please consider giving a star :star: and citation
343
-
344
- ```
345
- @misc{li2023making,
346
- title={Making Large Language Models A Better Foundation For Dense Retrieval},
347
- author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
348
- year={2023},
349
- eprint={2312.15503},
350
- archivePrefix={arXiv},
351
- primaryClass={cs.CL}
352
  }
353
- @misc{chen2024bge,
354
- title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
355
- author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
356
- year={2024},
357
- eprint={2402.03216},
358
- archivePrefix={arXiv},
359
- primaryClass={cs.CL}
360
- }
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-reranker-v2-minicpm-layerwise",
3
+ "architectures": [
4
+ "LayerWiseMiniCPMForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "BAAI/bge-reranker-v2-minicpm-layerwise--configuration_minicpm_reranker.LayerWiseMiniCPMConfig",
10
+ "AutoModel": "BAAI/bge-reranker-v2-minicpm-layerwise--modeling_minicpm_reranker.LayerWiseMiniCPMModel",
11
+ "AutoModelForCausalLM": "BAAI/bge-reranker-v2-minicpm-layerwise--modeling_minicpm_reranker.LayerWiseMiniCPMForCausalLM"
12
+ },
13
+ "bos_token_id": 1,
14
+ "dim_model_base": 256,
15
+ "eos_token_id": 2,
16
+ "head_multi": true,
17
+ "head_type": "simple",
18
+ "hidden_act": "silu",
19
+ "hidden_size": 2304,
20
+ "initializer_range": 0.1,
21
+ "intermediate_size": 5760,
22
+ "max_position_embeddings": 2048,
23
+ "model_type": "minicpm",
24
+ "num_attention_heads": 36,
25
+ "num_hidden_layers": 40,
26
+ "num_key_value_heads": 36,
27
+ "pretraining_tp": 1,
28
+ "rms_norm_eps": 1e-05,
29
+ "rope_scaling": null,
30
+ "rope_theta": 10000.0,
31
+ "scale_depth": 1.4,
32
+ "scale_emb": 12,
33
+ "start_layer": 8,
34
+ "torch_dtype": "bfloat16",
35
+ "transformers_version": "4.38.1",
36
+ "use_cache": false,
37
+ "vocab_size": 122753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  }