--- license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: NLP_90_1 results: [] --- # NLP_90_1 This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3325 - Accuracy: 0.9174 - Precision: 0.9126 - Recall: 0.9140 - F1: 0.9128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3664 | 1.0 | 48 | 0.3609 | 0.8991 | 0.8935 | 0.8988 | 0.8938 | | 0.2282 | 2.0 | 96 | 0.3376 | 0.8991 | 0.8920 | 0.8978 | 0.8927 | | 0.1638 | 3.0 | 144 | 0.3184 | 0.9128 | 0.9070 | 0.9079 | 0.9070 | | 0.1595 | 4.0 | 192 | 0.3291 | 0.9174 | 0.9147 | 0.9131 | 0.9135 | | 0.1388 | 5.0 | 240 | 0.3495 | 0.8945 | 0.8844 | 0.8918 | 0.8865 | | 0.1075 | 6.0 | 288 | 0.3357 | 0.9174 | 0.9151 | 0.9141 | 0.9139 | | 0.1073 | 7.0 | 336 | 0.3311 | 0.9174 | 0.9126 | 0.9140 | 0.9128 | | 0.1507 | 8.0 | 384 | 0.3325 | 0.9174 | 0.9126 | 0.9140 | 0.9128 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1