--- base_model: microsoft/Phi-3.5-mini-instruct library_name: peft license: mit tags: - generated_from_trainer model-index: - name: phi3.5-mini-adapter_v0 results: [] --- # phi3.5-mini-adapter_v0 This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9711 | 0.1509 | 10 | 10.5546 | | 0.0847 | 0.3019 | 20 | 0.1104 | | 0.0989 | 0.4528 | 30 | 0.0840 | | 0.0543 | 0.6038 | 40 | 0.0588 | | 0.0392 | 0.7547 | 50 | 0.0490 | | 0.0447 | 0.9057 | 60 | 0.0457 | | 0.0465 | 1.0566 | 70 | 0.0435 | | 0.0317 | 1.2075 | 80 | 0.0445 | | 0.0443 | 1.3585 | 90 | 0.0423 | ### Framework versions - PEFT 0.11.1 - Transformers 4.43.1 - Pytorch 2.4.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1