BTX24 commited on
Commit
a9896e5
1 Parent(s): 0d1255b

Model save

Browse files
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: facebook/convnextv2-base-22k-224
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: convnextv2-base-22k-224-finetuned-tekno24-highdata-90
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # convnextv2-base-22k-224-finetuned-tekno24-highdata-90
21
+
22
+ This model is a fine-tuned version of [facebook/convnextv2-base-22k-224](https://huggingface.co/facebook/convnextv2-base-22k-224) on an unknown dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 1.0280
25
+ - Accuracy: 0.6129
26
+ - F1: 0.6087
27
+ - Precision: 0.6161
28
+ - Recall: 0.6129
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 5e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 16
50
+ - seed: 42
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 64
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.1
56
+ - num_epochs: 30
57
+ - mixed_precision_training: Native AMP
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
62
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
63
+ | 1.3277 | 0.9908 | 81 | 1.2870 | 0.4147 | 0.3280 | 0.3714 | 0.4147 |
64
+ | 1.2024 | 1.9939 | 163 | 1.0890 | 0.4747 | 0.3907 | 0.4944 | 0.4747 |
65
+ | 1.2067 | 2.9969 | 245 | 1.0601 | 0.5438 | 0.4965 | 0.5084 | 0.5438 |
66
+ | 1.206 | 4.0 | 327 | 1.0143 | 0.5392 | 0.5159 | 0.5180 | 0.5392 |
67
+ | 1.1049 | 4.9908 | 408 | 0.9688 | 0.5760 | 0.5451 | 0.5467 | 0.5760 |
68
+ | 1.0931 | 5.9939 | 490 | 1.0351 | 0.5622 | 0.5562 | 0.5939 | 0.5622 |
69
+ | 1.0752 | 6.9969 | 572 | 0.9370 | 0.5899 | 0.5592 | 0.5730 | 0.5899 |
70
+ | 1.03 | 8.0 | 654 | 0.9417 | 0.5760 | 0.5510 | 0.5414 | 0.5760 |
71
+ | 0.988 | 8.9908 | 735 | 0.8942 | 0.5991 | 0.5772 | 0.5819 | 0.5991 |
72
+ | 0.9692 | 9.9939 | 817 | 0.9091 | 0.6083 | 0.5937 | 0.5981 | 0.6083 |
73
+ | 0.9896 | 10.9969 | 899 | 0.8690 | 0.6037 | 0.5905 | 0.5937 | 0.6037 |
74
+ | 0.9479 | 12.0 | 981 | 0.8705 | 0.6406 | 0.6268 | 0.6307 | 0.6406 |
75
+ | 0.898 | 12.9908 | 1062 | 0.8569 | 0.6498 | 0.6440 | 0.6465 | 0.6498 |
76
+ | 0.9101 | 13.9939 | 1144 | 0.8736 | 0.6129 | 0.6091 | 0.6179 | 0.6129 |
77
+ | 0.8431 | 14.9969 | 1226 | 0.8684 | 0.6452 | 0.6419 | 0.6447 | 0.6452 |
78
+ | 0.8187 | 16.0 | 1308 | 0.9032 | 0.6221 | 0.6199 | 0.6207 | 0.6221 |
79
+ | 0.7614 | 16.9908 | 1389 | 0.9013 | 0.6359 | 0.6305 | 0.6434 | 0.6359 |
80
+ | 0.725 | 17.9939 | 1471 | 0.9702 | 0.5991 | 0.5975 | 0.6072 | 0.5991 |
81
+ | 0.6938 | 18.9969 | 1553 | 0.9598 | 0.6728 | 0.6660 | 0.6840 | 0.6728 |
82
+ | 0.6761 | 20.0 | 1635 | 0.9886 | 0.6083 | 0.6112 | 0.6242 | 0.6083 |
83
+ | 0.5865 | 20.9908 | 1716 | 0.9367 | 0.6498 | 0.6428 | 0.6432 | 0.6498 |
84
+ | 0.5857 | 21.9939 | 1798 | 0.9694 | 0.6313 | 0.6322 | 0.6331 | 0.6313 |
85
+ | 0.556 | 22.9969 | 1880 | 1.0212 | 0.6359 | 0.6296 | 0.6574 | 0.6359 |
86
+ | 0.4871 | 24.0 | 1962 | 1.0328 | 0.5945 | 0.5879 | 0.5951 | 0.5945 |
87
+ | 0.5254 | 24.9908 | 2043 | 1.0132 | 0.5945 | 0.5917 | 0.5968 | 0.5945 |
88
+ | 0.5054 | 25.9939 | 2125 | 1.0385 | 0.5945 | 0.5944 | 0.5988 | 0.5945 |
89
+ | 0.4706 | 26.9969 | 2207 | 1.0626 | 0.6037 | 0.5983 | 0.6100 | 0.6037 |
90
+ | 0.418 | 28.0 | 2289 | 1.0531 | 0.5806 | 0.5774 | 0.5830 | 0.5806 |
91
+ | 0.455 | 28.9908 | 2370 | 1.0340 | 0.6083 | 0.6039 | 0.6151 | 0.6083 |
92
+ | 0.4414 | 29.7248 | 2430 | 1.0280 | 0.6129 | 0.6087 | 0.6161 | 0.6129 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.44.2
98
+ - Pytorch 2.4.0+cu121
99
+ - Datasets 2.21.0
100
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d349d62ac7a6b6d8fa8f093b4cd25557970199ee9362bdd1f78b775efdf7f56a
3
  size 350833648
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ee2f776470709eaa4651be429bac5e47577f1e0b3e7d52e3b80709ab2f303f0
3
  size 350833648
runs/Sep05_12-48-05_b998cf4c28a2/events.out.tfevents.1725540494.b998cf4c28a2.3248.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ae749401acfa519ddfb2998a059647dbb3a13ec7e73071951dd83de933f4a11b
3
- size 70214
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f83a2f17a79e9a6aab0a6d43966ee3ffe59a44bb60077926780e89df9b3369de
3
+ size 71040