|
from dataclasses import dataclass |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoModelForSpeechSeq2Seq, |
|
LogitsProcessor, |
|
PretrainedConfig, |
|
PreTrainedModel, |
|
SpeechEncoderDecoderConfig, |
|
SpeechEncoderDecoderModel, |
|
StoppingCriteriaList, |
|
) |
|
from transformers.generation.logits_process import LogitsProcessorList |
|
from transformers.generation.utils import GenerateOutput |
|
from transformers.modeling_outputs import CausalLMOutput, Seq2SeqLMOutput |
|
from transformers.models.speech_encoder_decoder.modeling_speech_encoder_decoder import ( |
|
shift_tokens_right, |
|
) |
|
from transformers.utils import logging |
|
|
|
from .auto_wrappers import CustomAutoModelForCTC |
|
from .configuration_decred import JointCTCAttentionEncoderDecoderConfig |
|
from .ctc_scorer import CTCRescorerLogitsProcessor, LogSoftmaxProcessor |
|
from .embeddings import AdaptiveEmbedding, PositionalEmbedding |
|
from .generation import GenerationConfigCustom |
|
from .multi_head_gpt2 import GPT2LMMultiHeadModel |
|
|
|
logger = logging.get_logger("transformers") |
|
|
|
|
|
class LMRescorerLogitsProcessor(LogitsProcessor): |
|
"""Logits Processor to rescore the next token scores with a language model.""" |
|
|
|
def __init__(self, lm_weight: float, lm_model: PreTrainedModel, device: torch.device): |
|
super().__init__() |
|
self.lm_model = lm_model.to(device) |
|
self.lm_weight = lm_weight |
|
|
|
|
|
@staticmethod |
|
def analyze_predictions(scores, lm_scores, next_token_scores, input_ids, k=10, tokenizer="Lakoc/ted_uni500"): |
|
from transformers import AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer) |
|
best_att_ids = scores.topk(k=k, dim=1) |
|
best_ctc_ids = lm_scores.topk(k=k, dim=1) |
|
best_ids = next_token_scores.topk(k=k, dim=1) |
|
|
|
def print_prediction(best_ids, name): |
|
new_tensor = torch.zeros((best_ids.indices.shape[0], best_ids.indices.shape[1] * 2), dtype=torch.long) |
|
new_tensor[:, 0::2] = best_ids.indices |
|
new_tensor[:, 1::2] = 1 |
|
print(f"{name}:") |
|
for index, (next_ids, scores) in enumerate(zip(tokenizer.batch_decode(new_tensor), best_ids.values)): |
|
print(f"HYP {index}:\n{next_ids} {scores}") |
|
|
|
print(f"PREFIX:") |
|
for index, prefix in enumerate(tokenizer.batch_decode(input_ids)): |
|
print(f"HYP {index}:\n{prefix}") |
|
print_prediction(best_att_ids, "ACCUSTIC_SCORES") |
|
print() |
|
print_prediction(best_ctc_ids, "LM_SCORES") |
|
print() |
|
print_prediction(best_ids, "NEXT_TOKEN_SCORES") |
|
print() |
|
|
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
|
|
outputs = self.lm_model( |
|
input_ids, |
|
|
|
|
|
|
|
) |
|
|
|
lm_scores = torch.nn.functional.log_softmax(outputs.logits[:, -1, :], dim=-1) |
|
next_token_scores = scores + self.lm_weight * lm_scores |
|
|
|
return next_token_scores |
|
|
|
|
|
def wav2vec2_forward_hidden_return_hook(_: PreTrainedModel, __: Any, kwargs): |
|
kwargs["output_hidden_states"] = True |
|
|
|
|
|
@dataclass |
|
class Seq2SeqLMOutputLosses(Seq2SeqLMOutput): |
|
enc_loss: Optional[torch.FloatTensor] = None |
|
dec_loss: Optional[torch.FloatTensor] = None |
|
encoder_logits: Optional[torch.FloatTensor] = None |
|
|
|
|
|
def wav2vec2_for_ctc_forward_hook(model: CustomAutoModelForCTC, input: Any, output: CausalLMOutput): |
|
if "hidden_states" in output: |
|
output.last_hidden_state = output.hidden_states[-1] |
|
|
|
|
|
class JointCTCAttentionEncoderDecoder(SpeechEncoderDecoderModel): |
|
"""Custom model for CTC+Attention loss based on the ESPNet architecture""" |
|
|
|
config_class = JointCTCAttentionEncoderDecoderConfig |
|
base_model_prefix = "joint_aed_ctc_speech-encoder-decoder" |
|
|
|
def __init__( |
|
self, |
|
config: Optional[PretrainedConfig] = None, |
|
encoder: Optional[PreTrainedModel] = None, |
|
decoder: Optional[PreTrainedModel] = None, |
|
): |
|
if config is None and (encoder is None or decoder is None): |
|
raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") |
|
if config is None: |
|
config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) |
|
else: |
|
if not isinstance(config, self.config_class): |
|
raise ValueError(f"Config: {config} has to be of type {self.config_class}") |
|
|
|
if config.decoder.cross_attention_hidden_size is not None: |
|
if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: |
|
raise ValueError( |
|
"If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" |
|
f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" |
|
f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" |
|
" `config.encoder.hidden_size`." |
|
) |
|
|
|
|
|
|
|
config.tie_word_embeddings = False |
|
super(SpeechEncoderDecoderModel, self).__init__(config) |
|
|
|
if encoder is None: |
|
encoder = CustomAutoModelForCTC.from_config(config.encoder) |
|
encoder.register_forward_hook(wav2vec2_for_ctc_forward_hook) |
|
encoder.register_forward_pre_hook(wav2vec2_forward_hidden_return_hook, with_kwargs=True) |
|
if decoder is None: |
|
decoder = AutoModelForCausalLM.from_config(config.decoder) |
|
|
|
self.encoder = encoder |
|
self.decoder = decoder |
|
|
|
if self.encoder.config.to_dict() != self.config.encoder.to_dict(): |
|
logger.warning( |
|
f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" |
|
f" {self.config.encoder}" |
|
) |
|
if self.decoder.config.to_dict() != self.config.decoder.to_dict(): |
|
logger.warning( |
|
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" |
|
f" {self.config.decoder}" |
|
) |
|
|
|
|
|
|
|
self.encoder.config = self.config.encoder |
|
self.decoder.config = self.config.decoder |
|
|
|
|
|
self.encoder_output_dim = getattr(config.encoder, "output_hidden_size", config.encoder.hidden_size) |
|
if ( |
|
self.encoder_output_dim != self.decoder.config.hidden_size |
|
and self.decoder.config.cross_attention_hidden_size is None |
|
): |
|
|
|
self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size) |
|
|
|
if self.encoder.get_output_embeddings() is not None: |
|
raise ValueError( |
|
f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" |
|
) |
|
self.enc_loss_weight = config.ctc_weight |
|
self.dec_loss_weight = 1 - config.ctc_weight |
|
self.lsm_factor = config.lsm_factor |
|
|
|
if config.shared_lm_head: |
|
self.encoder.lm_head.weight = self.decoder.lm_head.weight |
|
|
|
if (hasattr(config, "decoder_pos_emb_fixed") and config.decoder_pos_emb_fixed) or ( |
|
hasattr(config.decoder, "pos_emb_fixed") and config.decoder.pos_emb_fixed |
|
): |
|
self.decoder.transformer.wte = AdaptiveEmbedding( |
|
n_token=config.decoder.vocab_size, |
|
d_embed=config.decoder.hidden_size, |
|
d_proj=config.decoder.hidden_size, |
|
cutoffs=[], |
|
) |
|
self.decoder.transformer.wpe = PositionalEmbedding(demb=config.decoder.hidden_size) |
|
self.decoder.post_init() |
|
|
|
self.encoder_logits = None |
|
self.encoder_output_lens = None |
|
|
|
@classmethod |
|
def from_encoder_decoder_pretrained( |
|
cls, |
|
encoder_pretrained_model_name_or_path: str = None, |
|
decoder_pretrained_model_name_or_path: str = None, |
|
*model_args, |
|
**kwargs, |
|
) -> PreTrainedModel: |
|
kwargs_encoder = { |
|
argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") |
|
} |
|
|
|
kwargs_decoder = { |
|
argument[len("decoder_") :]: value |
|
for argument, value in kwargs.items() |
|
if argument.startswith("decoder_") and argument != "decoder_start_token_id" |
|
} |
|
|
|
|
|
for key in kwargs_encoder.keys(): |
|
del kwargs["encoder_" + key] |
|
for key in kwargs_decoder.keys(): |
|
del kwargs["decoder_" + key] |
|
|
|
|
|
|
|
|
|
encoder = kwargs_encoder.pop("model", None) |
|
if encoder is None: |
|
if encoder_pretrained_model_name_or_path is None: |
|
raise ValueError( |
|
"If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " |
|
"to be defined." |
|
) |
|
|
|
if "config" not in kwargs_encoder: |
|
encoder_config, kwargs_encoder = AutoConfig.from_pretrained( |
|
encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True |
|
) |
|
|
|
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: |
|
logger.info( |
|
f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " |
|
"from a decoder model. Cross-attention and casual mask are disabled." |
|
) |
|
encoder_config.is_decoder = False |
|
encoder_config.add_cross_attention = False |
|
|
|
kwargs_encoder["config"] = encoder_config |
|
|
|
encoder = CustomAutoModelForCTC.from_pretrained( |
|
encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder |
|
) |
|
encoder.register_forward_hook(wav2vec2_for_ctc_forward_hook) |
|
|
|
decoder = kwargs_decoder.pop("model", None) |
|
if decoder is None: |
|
if decoder_pretrained_model_name_or_path is None: |
|
raise ValueError( |
|
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " |
|
"to be defined." |
|
) |
|
|
|
if "config" not in kwargs_decoder: |
|
decoder_config, kwargs_decoder = AutoConfig.from_pretrained( |
|
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True |
|
) |
|
|
|
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: |
|
logger.info( |
|
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" |
|
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" |
|
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." |
|
) |
|
decoder_config.is_decoder = True |
|
decoder_config.add_cross_attention = True |
|
|
|
kwargs_decoder["config"] = decoder_config |
|
|
|
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: |
|
logger.warning( |
|
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " |
|
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " |
|
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " |
|
"passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " |
|
"`decoder_config` to `.from_encoder_decoder_pretrained(...)`" |
|
) |
|
|
|
decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) |
|
|
|
|
|
config = JointCTCAttentionEncoderDecoderConfig.from_encoder_decoder_configs( |
|
encoder.config, decoder.config, **kwargs |
|
) |
|
|
|
|
|
config.tie_word_embeddings = False |
|
return cls(encoder=encoder, decoder=decoder, config=config) |
|
|
|
def forward( |
|
self, |
|
inputs: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
input_values: Optional[torch.FloatTensor] = None, |
|
input_features: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutputLosses]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} |
|
|
|
kwargs_decoder = { |
|
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") |
|
} |
|
|
|
if encoder_outputs is None: |
|
if inputs is None: |
|
if input_values is not None and input_features is not None: |
|
raise ValueError("You cannot specify both input_values and input_features at the same time") |
|
elif input_values is not None: |
|
inputs = input_values |
|
elif input_features is not None: |
|
inputs = input_features |
|
else: |
|
raise ValueError("You have to specify either input_values or input_features") |
|
|
|
encoder_outputs = self.encoder( |
|
inputs, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
labels=labels, |
|
**kwargs_encoder, |
|
) |
|
elif isinstance(encoder_outputs, tuple): |
|
encoder_outputs = CausalLMOutput(*encoder_outputs) |
|
|
|
encoder_hidden_states = encoder_outputs.last_hidden_state |
|
|
|
|
|
if ( |
|
self.encoder_output_dim != self.decoder.config.hidden_size |
|
and self.decoder.config.cross_attention_hidden_size is None |
|
): |
|
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) |
|
|
|
|
|
if attention_mask is not None: |
|
encoder_attention_mask = self.encoder._get_feature_vector_attention_mask( |
|
encoder_hidden_states.shape[1], attention_mask |
|
) |
|
else: |
|
encoder_attention_mask = None |
|
|
|
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): |
|
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=True |
|
if hasattr(self.decoder, "head_weights") and len(self.decoder.head_weights) > 1 |
|
else output_hidden_states, |
|
use_cache=use_cache, |
|
past_key_values=past_key_values, |
|
return_dict=return_dict, |
|
**kwargs_decoder, |
|
) |
|
|
|
|
|
loss = enc_loss = dec_loss = None |
|
|
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss(label_smoothing=self.lsm_factor) |
|
enc_loss = encoder_outputs.loss if return_dict else encoder_outputs[0] |
|
if isinstance(self.decoder, GPT2LMMultiHeadModel) and len(self.decoder.head_weights) > 1: |
|
dec_loss = torch.zeros_like(enc_loss) |
|
lm_logits_per_layer = [] |
|
for index, lm_head, lm_weight in zip( |
|
[*self.decoder.head_locations, -1], |
|
[*self.decoder.additional_lm_heads, self.decoder.lm_head], |
|
self.decoder.head_weights, |
|
): |
|
lm_logits = lm_head(decoder_outputs.hidden_states[index]) |
|
dec_loss += lm_weight * loss_fct( |
|
lm_logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1) |
|
) |
|
lm_logits_per_layer.append(lm_logits) |
|
if self.decoder.config.average_logits: |
|
decoder_outputs.logits = torch.matmul( |
|
torch.stack(lm_logits_per_layer).T, |
|
torch.tensor(self.decoder.head_weights, device=lm_logits_per_layer[-1].device), |
|
).T |
|
|
|
else: |
|
dec_logits = decoder_outputs.logits if return_dict else decoder_outputs[0] |
|
dec_loss = loss_fct(dec_logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1)) |
|
loss = self.enc_loss_weight * enc_loss + self.dec_loss_weight * dec_loss |
|
|
|
if not return_dict: |
|
if loss is not None: |
|
return (loss,) + decoder_outputs + encoder_outputs |
|
else: |
|
return decoder_outputs + encoder_outputs |
|
|
|
return Seq2SeqLMOutputLosses( |
|
loss=loss, |
|
enc_loss=enc_loss, |
|
dec_loss=dec_loss, |
|
logits=decoder_outputs.logits, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
encoder_last_hidden_state=encoder_hidden_states, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
encoder_logits=encoder_outputs.logits, |
|
) |
|
|
|
def _get_logits_processor( |
|
self, |
|
generation_config: GenerationConfigCustom, |
|
input_ids_seq_length: int, |
|
encoder_input_ids: torch.LongTensor, |
|
prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], |
|
logits_processor: Optional[LogitsProcessorList], |
|
model_kwargs: Optional[Dict[str, Any]] = None, |
|
negative_prompt_ids: Optional[torch.Tensor] = None, |
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None, |
|
) -> LogitsProcessorList: |
|
|
|
processors = super()._get_logits_processor( |
|
generation_config, |
|
input_ids_seq_length, |
|
encoder_input_ids, |
|
prefix_allowed_tokens_fn, |
|
logits_processor, |
|
model_kwargs, |
|
negative_prompt_ids, |
|
negative_prompt_attention_mask, |
|
) |
|
if hasattr(generation_config, "ctc_weight") and generation_config.ctc_weight > 0: |
|
if generation_config.num_beams <= 1: |
|
processors.append(LogSoftmaxProcessor()) |
|
self.ctc_rescorer = CTCRescorerLogitsProcessor( |
|
self.encoder_logits, |
|
self.encoder_output_lens, |
|
self.generation_config.pad_token_id, |
|
self.generation_config.eos_token_id, |
|
self.generation_config.ctc_margin, |
|
self.generation_config.ctc_weight, |
|
self.generation_config.num_beams, |
|
self.generation_config.space_token_id if hasattr(self.generation_config, "space_token_id") else None, |
|
self.generation_config.apply_eos_space_trick |
|
if hasattr(self.generation_config, "apply_eos_space_trick") |
|
else False, |
|
self.generation_config.eos_space_trick_weight |
|
if hasattr(self.generation_config, "eos_space_trick_weight") |
|
else 0.0, |
|
) |
|
processors.append(self.ctc_rescorer) |
|
if hasattr(generation_config, "lm_weight") and generation_config.lm_weight > 0: |
|
if not hasattr(generation_config, "lm_model"): |
|
raise ValueError("If `lm_weight` is specified, make sure that `lm_model` is defined.") |
|
processors.append( |
|
LMRescorerLogitsProcessor(generation_config.lm_weight, generation_config.lm_model, device=self.device) |
|
) |
|
return processors |
|
|
|
def _prepare_encoder_decoder_kwargs_for_generation( |
|
self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str] = None |
|
) -> Dict[str, Any]: |
|
self.encoder_output_lens = self.encoder._get_feat_extract_output_lengths( |
|
model_kwargs["attention_mask"].sum(dim=1) |
|
) |
|
|
|
model_kwargs = super()._prepare_encoder_decoder_kwargs_for_generation( |
|
inputs_tensor, model_kwargs, model_input_name |
|
) |
|
self.encoder_logits = model_kwargs["encoder_outputs"].logits |
|
return model_kwargs |
|
|
|
@staticmethod |
|
def _expand_inputs_for_generation( |
|
expand_size: int = 1, |
|
is_encoder_decoder: bool = False, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
**model_kwargs, |
|
) -> Tuple[torch.LongTensor, Dict[str, Any]]: |
|
"""Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]""" |
|
|
|
def _expand_dict_for_generation(dict_to_expand): |
|
for key in dict_to_expand: |
|
if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor) and key != "loss": |
|
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0) |
|
return dict_to_expand |
|
|
|
if input_ids is not None: |
|
input_ids = input_ids.repeat_interleave(expand_size, dim=0) |
|
|
|
model_kwargs = _expand_dict_for_generation(model_kwargs) |
|
|
|
if is_encoder_decoder: |
|
if model_kwargs.get("encoder_outputs") is None: |
|
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.") |
|
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"]) |
|
model_kwargs["encoder_outputs"].last_hidden_state = model_kwargs[ |
|
"encoder_outputs" |
|
].last_hidden_state.repeat_interleave(expand_size, dim=0) |
|
|
|
return input_ids, model_kwargs |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
generation_config: Optional[GenerationConfigCustom] = None, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, |
|
synced_gpus: Optional[bool] = None, |
|
assistant_model: Optional["PreTrainedModel"] = None, |
|
streamer: Optional["BaseStreamer"] = None, |
|
**kwargs, |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
if "encoder_outputs" in kwargs: |
|
self.encoder_logits = kwargs["encoder_outputs"].logits |
|
self.encoder_output_lens = self.encoder._get_feat_extract_output_lengths( |
|
kwargs["attention_mask"].sum(dim=1) |
|
) |
|
|
|
output = super().generate( |
|
inputs, |
|
generation_config, |
|
logits_processor, |
|
stopping_criteria, |
|
prefix_allowed_tokens_fn, |
|
synced_gpus, |
|
assistant_model, |
|
streamer, |
|
**kwargs, |
|
) |
|
self.encoder_logits = None |
|
self.encoder_output_lens = None |
|
return output |
|
|
|
|
|
AutoConfig.register("joint_aed_ctc_speech-encoder-decoder", JointCTCAttentionEncoderDecoderConfig) |
|
AutoModelForSpeechSeq2Seq.register(JointCTCAttentionEncoderDecoderConfig, JointCTCAttentionEncoderDecoder) |
|
|