Update README.md
Browse files
README.md
CHANGED
@@ -85,6 +85,45 @@ model-index:
|
|
85 |
- type: wer
|
86 |
value: 12.1
|
87 |
name: Test WER
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
---
|
89 |
# DeCRED-base
|
90 |
This is a **174M encoder-decoder Ebranchformer model** trained with an decoder-centric regularization technique on 6,000 hours of open-source normalised English data.
|
|
|
85 |
- type: wer
|
86 |
value: 12.1
|
87 |
name: Test WER
|
88 |
+
- task:
|
89 |
+
type: automatic-speech-recognition
|
90 |
+
name: Automatic Speech Recognition
|
91 |
+
dataset:
|
92 |
+
name: FLEURS
|
93 |
+
type: google/fleurs
|
94 |
+
split: test
|
95 |
+
args:
|
96 |
+
language: en_us
|
97 |
+
metrics:
|
98 |
+
- type: wer
|
99 |
+
value: 6.8
|
100 |
+
name: Test WER
|
101 |
+
- task:
|
102 |
+
type: automatic-speech-recognition
|
103 |
+
name: Automatic Speech Recognition
|
104 |
+
dataset:
|
105 |
+
name: Switchboard
|
106 |
+
type: unk
|
107 |
+
split: eval2000
|
108 |
+
args:
|
109 |
+
language: en
|
110 |
+
metrics:
|
111 |
+
- type: wer
|
112 |
+
value: 6.8
|
113 |
+
name: Test WER
|
114 |
+
- task:
|
115 |
+
type: automatic-speech-recognition
|
116 |
+
name: Automatic Speech Recognition
|
117 |
+
dataset:
|
118 |
+
name: Wall Street Journal
|
119 |
+
type: unk
|
120 |
+
split: eval92
|
121 |
+
args:
|
122 |
+
language: en
|
123 |
+
metrics:
|
124 |
+
- type: wer
|
125 |
+
value: 1.3
|
126 |
+
name: Test WER
|
127 |
---
|
128 |
# DeCRED-base
|
129 |
This is a **174M encoder-decoder Ebranchformer model** trained with an decoder-centric regularization technique on 6,000 hours of open-source normalised English data.
|