from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions from transformers.models.gpt2.configuration_gpt2 import GPT2Config from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel class GPT2MultiHeadConfig(GPT2Config): model_type = "gpt2-multi-head" def __init__( self, head_locations=None, head_weights=None, tie_additional_weights=False, average_logits=False, *args, **kwargs, ): super().__init__(*args, **kwargs) self.head_locations = head_locations self.head_weights = head_weights self.tie_additional_weights = tie_additional_weights self.average_logits = average_logits class GPT2LMMultiHeadModel(GPT2LMHeadModel): config_class = GPT2MultiHeadConfig def __init__(self, config: GPT2MultiHeadConfig): super().__init__(config) if config.head_locations is not None: if not len(config.head_locations) + 1 == len(config.head_weights): raise ValueError("The number of head locations should be equal to the number of head weights minus 1") self.head_locations = config.head_locations self.additional_lm_heads = nn.ModuleList( [nn.Linear(config.n_embd, config.vocab_size, bias=False) for _ in config.head_locations] ) self.head_weights = config.head_weights else: self.head_locations = [] self.additional_lm_heads = nn.ModuleList([]) self.head_weights = [1.0] self.post_init() def tie_weights(self): """ Tie the weights between the input embeddings and the output embeddings. If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the weights instead. """ super().tie_weights() if hasattr(self, "additional_lm_heads") and getattr(self.config, "tie_additional_weights", False): input_embeddings = self.get_input_embeddings() for classifier in self.additional_lm_heads: if self.config.torchscript: classifier.weight = nn.Parameter(input_embeddings.weight.clone()) else: classifier.weight = input_embeddings.weight if getattr(classifier, "bias", None) is not None: classifier.bias.data = nn.functional.pad( classifier.bias.data, ( 0, classifier.weight.shape[0] - classifier.bias.shape[0], ), "constant", 0, ) if hasattr(classifier, "out_features") and hasattr(input_embeddings, "num_embeddings"): classifier.out_features = input_embeddings.num_embeddings def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=True, return_dict=return_dict, ) hidden_states = transformer_outputs[2] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.transformer.first_device) hidden_states = hidden_states.to(self.lm_head.weight.device) lm_logits = self.lm_head(hidden_states[-1]) loss = None if labels is not None: loss = torch.tensor(0.0, device=hidden_states[-1].device) lm_logits = [] loss_fct = CrossEntropyLoss() for index, lm_head, lm_weight in zip( [*self.head_locations, -1], [*self.additional_lm_heads, self.lm_head], self.head_weights, ): lm_logits.append(lm_head(hidden_states[index])) # Shift so that tokens < n predict n shift_logits = lm_logits[-1][..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss += lm_weight * loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if self.config.average_logits: lm_logits = (torch.vstack(lm_logits) * torch.tensor(self.head_weights)).mean(dim=0) else: lm_logits = lm_logits[-1] if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, )