File size: 25,837 Bytes
c0f8a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoModelForSpeechSeq2Seq,
    LogitsProcessor,
    PretrainedConfig,
    PreTrainedModel,
    SpeechEncoderDecoderConfig,
    SpeechEncoderDecoderModel,
    StoppingCriteriaList,
)
from transformers.generation.logits_process import LogitsProcessorList
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import CausalLMOutput, Seq2SeqLMOutput
from transformers.models.speech_encoder_decoder.modeling_speech_encoder_decoder import (
    shift_tokens_right,
)
from transformers.utils import logging

from .auto_wrappers import CustomAutoModelForCTC
from .configuration_decred import JointCTCAttentionEncoderDecoderConfig
from .ctc_scorer import CTCRescorerLogitsProcessor, LogSoftmaxProcessor
from .embeddings import AdaptiveEmbedding, PositionalEmbedding
from .generation import GenerationConfigCustom
from .multi_head_gpt2 import GPT2LMMultiHeadModel

logger = logging.get_logger("transformers")


class LMRescorerLogitsProcessor(LogitsProcessor):
    """Logits Processor to rescore the next token scores with a language model."""

    def __init__(self, lm_weight: float, lm_model: PreTrainedModel, device: torch.device):
        super().__init__()
        self.lm_model = lm_model.to(device)
        self.lm_weight = lm_weight
        # self.past_key_values = None

    @staticmethod
    def analyze_predictions(scores, lm_scores, next_token_scores, input_ids, k=10, tokenizer="Lakoc/ted_uni500"):
        from transformers import AutoTokenizer

        tokenizer = AutoTokenizer.from_pretrained(tokenizer)
        best_att_ids = scores.topk(k=k, dim=1)
        best_ctc_ids = lm_scores.topk(k=k, dim=1)
        best_ids = next_token_scores.topk(k=k, dim=1)

        def print_prediction(best_ids, name):
            new_tensor = torch.zeros((best_ids.indices.shape[0], best_ids.indices.shape[1] * 2), dtype=torch.long)
            new_tensor[:, 0::2] = best_ids.indices
            new_tensor[:, 1::2] = 1
            print(f"{name}:")
            for index, (next_ids, scores) in enumerate(zip(tokenizer.batch_decode(new_tensor), best_ids.values)):
                print(f"HYP {index}:\n{next_ids} {scores}")

        print(f"PREFIX:")
        for index, prefix in enumerate(tokenizer.batch_decode(input_ids)):
            print(f"HYP {index}:\n{prefix}")
        print_prediction(best_att_ids, "ACCUSTIC_SCORES")
        print()
        print_prediction(best_ctc_ids, "LM_SCORES")
        print()
        print_prediction(best_ids, "NEXT_TOKEN_SCORES")
        print()

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
        # TODO: KarelB: Can you implement the past_key_values logic?
        outputs = self.lm_model(
            input_ids,
            # input_ids[:, -1]
            # past_key_values=self.past_key_values,
            # use_cache=True
        )
        # self.past_key_values = outputs.past_key_values
        lm_scores = torch.nn.functional.log_softmax(outputs.logits[:, -1, :], dim=-1)
        next_token_scores = scores + self.lm_weight * lm_scores
        # self.analyze_predictions(scores, lm_scores, next_token_scores, input_ids)
        return next_token_scores


def wav2vec2_forward_hidden_return_hook(_: PreTrainedModel, __: Any, kwargs):
    kwargs["output_hidden_states"] = True


@dataclass
class Seq2SeqLMOutputLosses(Seq2SeqLMOutput):
    enc_loss: Optional[torch.FloatTensor] = None
    dec_loss: Optional[torch.FloatTensor] = None
    encoder_logits: Optional[torch.FloatTensor] = None


def wav2vec2_for_ctc_forward_hook(model: CustomAutoModelForCTC, input: Any, output: CausalLMOutput):
    if "hidden_states" in output:
        output.last_hidden_state = output.hidden_states[-1]


class JointCTCAttentionEncoderDecoder(SpeechEncoderDecoderModel):
    """Custom model for CTC+Attention loss based on the ESPNet architecture"""

    config_class = JointCTCAttentionEncoderDecoderConfig
    base_model_prefix = "joint_aed_ctc_speech-encoder-decoder"

    def __init__(
        self,
        config: Optional[PretrainedConfig] = None,
        encoder: Optional[PreTrainedModel] = None,
        decoder: Optional[PreTrainedModel] = None,
    ):
        if config is None and (encoder is None or decoder is None):
            raise ValueError("Either a configuration or an encoder and a decoder has to be provided.")
        if config is None:
            config = SpeechEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config)
        else:
            if not isinstance(config, self.config_class):
                raise ValueError(f"Config: {config} has to be of type {self.config_class}")

        if config.decoder.cross_attention_hidden_size is not None:
            if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size:
                raise ValueError(
                    "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal"
                    f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
                    f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for"
                    " `config.encoder.hidden_size`."
                )

            # initialize with config
            # make sure input & output embeddings is not tied
        config.tie_word_embeddings = False
        super(SpeechEncoderDecoderModel, self).__init__(config)

        if encoder is None:
            encoder = CustomAutoModelForCTC.from_config(config.encoder)
            encoder.register_forward_hook(wav2vec2_for_ctc_forward_hook)
            encoder.register_forward_pre_hook(wav2vec2_forward_hidden_return_hook, with_kwargs=True)
        if decoder is None:
            decoder = AutoModelForCausalLM.from_config(config.decoder)

        self.encoder = encoder
        self.decoder = decoder

        if self.encoder.config.to_dict() != self.config.encoder.to_dict():
            logger.warning(
                f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:"
                f" {self.config.encoder}"
            )
        if self.decoder.config.to_dict() != self.config.decoder.to_dict():
            logger.warning(
                f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
                f" {self.config.decoder}"
            )

        # make sure that the individual model's config refers to the shared config
        # so that the updates to the config will be synced
        self.encoder.config = self.config.encoder
        self.decoder.config = self.config.decoder

        # get encoder output hidden size
        self.encoder_output_dim = getattr(config.encoder, "output_hidden_size", config.encoder.hidden_size)
        if (
            self.encoder_output_dim != self.decoder.config.hidden_size
            and self.decoder.config.cross_attention_hidden_size is None
        ):
            # encoder outputs might need to be projected to different dimension for decoder
            self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size)

        if self.encoder.get_output_embeddings() is not None:
            raise ValueError(
                f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head"
            )
        self.enc_loss_weight = config.ctc_weight
        self.dec_loss_weight = 1 - config.ctc_weight
        self.lsm_factor = config.lsm_factor

        if config.shared_lm_head:
            self.encoder.lm_head.weight = self.decoder.lm_head.weight

        if (hasattr(config, "decoder_pos_emb_fixed") and config.decoder_pos_emb_fixed) or (
            hasattr(config.decoder, "pos_emb_fixed") and config.decoder.pos_emb_fixed
        ):
            self.decoder.transformer.wte = AdaptiveEmbedding(
                n_token=config.decoder.vocab_size,
                d_embed=config.decoder.hidden_size,
                d_proj=config.decoder.hidden_size,
                cutoffs=[],
            )
            self.decoder.transformer.wpe = PositionalEmbedding(demb=config.decoder.hidden_size)
            self.decoder.post_init()

        self.encoder_logits = None
        self.encoder_output_lens = None

    @classmethod
    def from_encoder_decoder_pretrained(
        cls,
        encoder_pretrained_model_name_or_path: str = None,
        decoder_pretrained_model_name_or_path: str = None,
        *model_args,
        **kwargs,
    ) -> PreTrainedModel:
        kwargs_encoder = {
            argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_")
        }

        kwargs_decoder = {
            argument[len("decoder_") :]: value
            for argument, value in kwargs.items()
            if argument.startswith("decoder_") and argument != "decoder_start_token_id"
        }

        # remove encoder, decoder kwargs from kwargs
        for key in kwargs_encoder.keys():
            del kwargs["encoder_" + key]
        for key in kwargs_decoder.keys():
            del kwargs["decoder_" + key]

        # Load and initialize the encoder and decoder
        # The distinction between encoder and decoder at the model level is made
        # by the value of the flag `is_decoder` that we need to set correctly.
        encoder = kwargs_encoder.pop("model", None)
        if encoder is None:
            if encoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_encoder:
                encoder_config, kwargs_encoder = AutoConfig.from_pretrained(
                    encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True
                )

                if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
                    logger.info(
                        f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model "
                        "from a decoder model. Cross-attention and casual mask are disabled."
                    )
                    encoder_config.is_decoder = False
                    encoder_config.add_cross_attention = False

                kwargs_encoder["config"] = encoder_config

            encoder = CustomAutoModelForCTC.from_pretrained(
                encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder
            )
            encoder.register_forward_hook(wav2vec2_for_ctc_forward_hook)

        decoder = kwargs_decoder.pop("model", None)
        if decoder is None:
            if decoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_decoder:
                decoder_config, kwargs_decoder = AutoConfig.from_pretrained(
                    decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
                )

                if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
                    logger.info(
                        f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
                        f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
                        f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
                    )
                    decoder_config.is_decoder = True
                    decoder_config.add_cross_attention = True

                kwargs_decoder["config"] = decoder_config

            if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
                logger.warning(
                    f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
                    f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
                    "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
                    "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a "
                    "`decoder_config` to `.from_encoder_decoder_pretrained(...)`"
                )

            decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)

        # instantiate config with corresponding kwargs
        config = JointCTCAttentionEncoderDecoderConfig.from_encoder_decoder_configs(
            encoder.config, decoder.config, **kwargs
        )

        # make sure input & output embeddings is not tied
        config.tie_word_embeddings = False
        return cls(encoder=encoder, decoder=decoder, config=config)

    def forward(
        self,
        inputs: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        input_values: Optional[torch.FloatTensor] = None,
        input_features: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutputLosses]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")}

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        if encoder_outputs is None:
            if inputs is None:
                if input_values is not None and input_features is not None:
                    raise ValueError("You cannot specify both input_values and input_features at the same time")
                elif input_values is not None:
                    inputs = input_values
                elif input_features is not None:
                    inputs = input_features
                else:
                    raise ValueError("You have to specify either input_values or input_features")

            encoder_outputs = self.encoder(
                inputs,
                attention_mask=attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                labels=labels,
                **kwargs_encoder,
            )
        elif isinstance(encoder_outputs, tuple):
            encoder_outputs = CausalLMOutput(*encoder_outputs)

        encoder_hidden_states = encoder_outputs.last_hidden_state

        # optionally project encoder_hidden_states
        if (
            self.encoder_output_dim != self.decoder.config.hidden_size
            and self.decoder.config.cross_attention_hidden_size is None
        ):
            encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)

        # compute correct encoder attention mask
        if attention_mask is not None:
            encoder_attention_mask = self.encoder._get_feature_vector_attention_mask(
                encoder_hidden_states.shape[1], attention_mask
            )
        else:
            encoder_attention_mask = None

        if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
            decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=True
            if hasattr(self.decoder, "head_weights") and len(self.decoder.head_weights) > 1
            else output_hidden_states,
            use_cache=use_cache,
            past_key_values=past_key_values,
            return_dict=return_dict,
            **kwargs_decoder,
        )

        # Compute loss independent from decoder (as some shift the logits inside them)
        loss = enc_loss = dec_loss = None

        if labels is not None:
            loss_fct = CrossEntropyLoss(label_smoothing=self.lsm_factor)
            enc_loss = encoder_outputs.loss if return_dict else encoder_outputs[0]
            if isinstance(self.decoder, GPT2LMMultiHeadModel) and len(self.decoder.head_weights) > 1:
                dec_loss = torch.zeros_like(enc_loss)
                lm_logits_per_layer = []
                for index, lm_head, lm_weight in zip(
                    [*self.decoder.head_locations, -1],
                    [*self.decoder.additional_lm_heads, self.decoder.lm_head],
                    self.decoder.head_weights,
                ):
                    lm_logits = lm_head(decoder_outputs.hidden_states[index])
                    dec_loss += lm_weight * loss_fct(
                        lm_logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1)
                    )
                    lm_logits_per_layer.append(lm_logits)
                if self.decoder.config.average_logits:
                    decoder_outputs.logits = torch.matmul(
                        torch.stack(lm_logits_per_layer).T,
                        torch.tensor(self.decoder.head_weights, device=lm_logits_per_layer[-1].device),
                    ).T

            else:
                dec_logits = decoder_outputs.logits if return_dict else decoder_outputs[0]
                dec_loss = loss_fct(dec_logits.reshape(-1, self.decoder.config.vocab_size), labels.reshape(-1))
            loss = self.enc_loss_weight * enc_loss + self.dec_loss_weight * dec_loss

        if not return_dict:
            if loss is not None:
                return (loss,) + decoder_outputs + encoder_outputs
            else:
                return decoder_outputs + encoder_outputs

        return Seq2SeqLMOutputLosses(
            loss=loss,
            enc_loss=enc_loss,
            dec_loss=dec_loss,
            logits=decoder_outputs.logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_hidden_states,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
            encoder_logits=encoder_outputs.logits,
        )

    def _get_logits_processor(
        self,
        generation_config: GenerationConfigCustom,
        input_ids_seq_length: int,
        encoder_input_ids: torch.LongTensor,
        prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
        logits_processor: Optional[LogitsProcessorList],
        model_kwargs: Optional[Dict[str, Any]] = None,
        negative_prompt_ids: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
    ) -> LogitsProcessorList:
        # pylint: disable=no-member
        processors = super()._get_logits_processor(
            generation_config,
            input_ids_seq_length,
            encoder_input_ids,
            prefix_allowed_tokens_fn,
            logits_processor,
            model_kwargs,
            negative_prompt_ids,
            negative_prompt_attention_mask,
        )
        if hasattr(generation_config, "ctc_weight") and generation_config.ctc_weight > 0:
            if generation_config.num_beams <= 1:
                processors.append(LogSoftmaxProcessor())
            self.ctc_rescorer = CTCRescorerLogitsProcessor(
                self.encoder_logits,
                self.encoder_output_lens,
                self.generation_config.pad_token_id,
                self.generation_config.eos_token_id,
                self.generation_config.ctc_margin,
                self.generation_config.ctc_weight,
                self.generation_config.num_beams,
                self.generation_config.space_token_id if hasattr(self.generation_config, "space_token_id") else None,
                self.generation_config.apply_eos_space_trick
                if hasattr(self.generation_config, "apply_eos_space_trick")
                else False,
                self.generation_config.eos_space_trick_weight
                if hasattr(self.generation_config, "eos_space_trick_weight")
                else 0.0,
            )
            processors.append(self.ctc_rescorer)
        if hasattr(generation_config, "lm_weight") and generation_config.lm_weight > 0:
            if not hasattr(generation_config, "lm_model"):
                raise ValueError("If `lm_weight` is specified, make sure that `lm_model` is defined.")
            processors.append(
                LMRescorerLogitsProcessor(generation_config.lm_weight, generation_config.lm_model, device=self.device)
            )
        return processors

    def _prepare_encoder_decoder_kwargs_for_generation(
        self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str] = None
    ) -> Dict[str, Any]:
        self.encoder_output_lens = self.encoder._get_feat_extract_output_lengths(
            model_kwargs["attention_mask"].sum(dim=1)
        )
        # pylint: disable=E1101
        model_kwargs = super()._prepare_encoder_decoder_kwargs_for_generation(
            inputs_tensor, model_kwargs, model_input_name
        )
        self.encoder_logits = model_kwargs["encoder_outputs"].logits
        return model_kwargs

    @staticmethod
    def _expand_inputs_for_generation(
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        input_ids: Optional[torch.LongTensor] = None,
        **model_kwargs,
    ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
        """Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""

        def _expand_dict_for_generation(dict_to_expand):
            for key in dict_to_expand:
                if dict_to_expand[key] is not None and isinstance(dict_to_expand[key], torch.Tensor) and key != "loss":
                    dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
            return dict_to_expand

        if input_ids is not None:
            input_ids = input_ids.repeat_interleave(expand_size, dim=0)

        model_kwargs = _expand_dict_for_generation(model_kwargs)

        if is_encoder_decoder:
            if model_kwargs.get("encoder_outputs") is None:
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
            model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
            model_kwargs["encoder_outputs"].last_hidden_state = model_kwargs[
                "encoder_outputs"
            ].last_hidden_state.repeat_interleave(expand_size, dim=0)

        return input_ids, model_kwargs

    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        generation_config: Optional[GenerationConfigCustom] = None,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
        synced_gpus: Optional[bool] = None,
        assistant_model: Optional["PreTrainedModel"] = None,
        streamer: Optional["BaseStreamer"] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        if "encoder_outputs" in kwargs:
            self.encoder_logits = kwargs["encoder_outputs"].logits
            self.encoder_output_lens = self.encoder._get_feat_extract_output_lengths(
                kwargs["attention_mask"].sum(dim=1)
            )
        # pylint: disable=E1101
        output = super().generate(
            inputs,
            generation_config,
            logits_processor,
            stopping_criteria,
            prefix_allowed_tokens_fn,
            synced_gpus,
            assistant_model,
            streamer,
            **kwargs,
        )
        self.encoder_logits = None
        self.encoder_output_lens = None
        return output


AutoConfig.register("joint_aed_ctc_speech-encoder-decoder", JointCTCAttentionEncoderDecoderConfig)
AutoModelForSpeechSeq2Seq.register(JointCTCAttentionEncoderDecoderConfig, JointCTCAttentionEncoderDecoder)