#!/usr/bin/bash #SBATCH --job-name DeCRED #SBATCH --account OPEN-28-57 #SBATCH --partition qgpu #SBATCH --nodes=4 #SBATCH --ntasks=4 #SBATCH --ntasks-per-node=1 #SBATCH --gpus-per-node 8 #SBATCH --cpus-per-task=128 #SBATCH --time 2-00:00:00 #SBATCH --output=/mnt/proj1/open-28-58/lakoc/huggingface_asr/outputs/ebranchformer_english_small_normalized_regularized.out EXPERIMENT="ebranchformer_english_small_normalized_regularized" PROJECT="regularizations_english_corpus" WORK_DIR="/mnt/proj1/open-28-58/lakoc/huggingface_asr" RECIPE_DIR="${WORK_DIR}/recipes/ebranchformer_english" EXPERIMENT_PATH="${WORK_DIR}/experiments/${EXPERIMENT}" HF_HOME="/scratch/project/open-28-57/lakoc/huggingface_cache" args=( # General training arguments --output_dir=$EXPERIMENT_PATH --per_device_train_batch_size="64" --per_device_eval_batch_size="8" --dataloader_num_workers="24" --num_train_epochs="400" --group_by_length="True" --bf16 --do_train --do_evaluate --joint_decoding_during_training --load_best_model_at_end --metric_for_best_model="eval_wer" # Optimizer related arguments --optim="adamw_torch" --learning_rate="1e-3" --warmup_steps="40000" --early_stopping_patience="10" --weight_decay="1e-6" --max_grad_norm="0.5" --lsm_factor="0.1" --mask_unks --gradient_accumulation_steps="1" # Logging, saving and evaluation related arguments --report_to="wandb" --logging_steps="10" --save_strategy="epoch" --evaluation_strategy="epoch" --wandb_predictions_to_save=500 --greater_is_better="False" --save_total_limit="5" --track_ctc_loss # Data related arguments --max_duration_in_seconds="20.0" --min_duration_in_seconds="0.2" --length_column_name="input_len" --remove_unused_columns="False" --preprocessing_num_workers="32" --dataset_name="/scratch/project/open-28-57/lakoc/processed_dataset_full" --writer_batch_size="500" --test_splits wsj_test fisher_swbd_dev voxpopuli_test tedlium3_test librispeech_test.clean librispeech_test.other commonvoice_en_test fleurs_test # Preprocessing related arguments --data_preprocessing_config="${RECIPE_DIR}/data_preprocessing.json" # Model related arguments --from_encoder_decoder_config --tokenizer_name="Lakoc/english_corpus_uni5000_normalized" --feature_extractor_name="Lakoc/log_80mel_extractor_16k" --base_encoder_model="Lakoc/fisher_ebranchformer_enc_12_layers_fixed" --base_decoder_model="Lakoc/gpt2_256h_6l_add_head3_04" --ctc_weight="0.3" --decoder_pos_emb_fixed --expect_2d_input # Generation related arguments --num_beams="1" --max_length="512" --predict_with_generate --decoding_ctc_weight="0" ) export PARENT=`/bin/hostname -s` export MPORT=13000 export CHILDREN=`scontrol show hostnames $SLURM_JOB_NODELIST | grep -v $PARENT` export HOSTLIST="$PARENT $CHILDREN" export WORLD_SIZE=$SLURM_NTASKS conda deactivate source activate loco_asr mkdir -p $EXPERIMENT_PATH srun --cpus-per-task $SLURM_CPUS_ON_NODE --gpus-per-task $SLURM_GPUS_ON_NODE \ /mnt/proj1/open-28-58/lakoc/huggingface_asr/recipes/multinode_training/start_single_node_job.sh \ "${EXPERIMENT}" $PROJECT $WORK_DIR $RECIPE_DIR $HF_HOME "${args[@]}"