Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
tags:
|
4 |
+
- image-classification
|
5 |
+
- ecology
|
6 |
+
- fungi
|
7 |
+
- FGVC
|
8 |
+
library_name: FungiTastic Dataset
|
9 |
+
license: cc-by-nc-4.0
|
10 |
+
---
|
11 |
+
# Model card for BVRA/tf_efficientnetv2_b3.in1k_ft_fungitastic-mini_224
|
12 |
+
|
13 |
+
## Model Details
|
14 |
+
- **Model Type:** Fine-grained classification of fungi species
|
15 |
+
- **Model Stats:**
|
16 |
+
- Params (M): 13.2
|
17 |
+
- Image size: 224 x 224
|
18 |
+
- **Papers:**
|
19 |
+
- **Original:** --> ???
|
20 |
+
- **Train Dataset:** FungiTastic --> https://arxiv.org/pdf/2408.13632
|
21 |
+
|
22 |
+
## Model Usage
|
23 |
+
### Image Embeddings
|
24 |
+
```python
|
25 |
+
import timm
|
26 |
+
import torch
|
27 |
+
import torchvision.transforms as T
|
28 |
+
from PIL import Image
|
29 |
+
from urllib.request import urlopen
|
30 |
+
model = timm.create_model("hf-hub:BVRA/tf_efficientnetv2_b3.in1k_ft_fungitastic-mini_224", pretrained=True)
|
31 |
+
model = model.eval()
|
32 |
+
train_transforms = T.Compose([T.Resize((224, 224)),
|
33 |
+
T.ToTensor(),
|
34 |
+
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
35 |
+
img = Image.open(PATH_TO_YOUR_IMAGE)
|
36 |
+
output = model(train_transforms(img).unsqueeze(0))
|
37 |
+
# output is a (1, num_features) shaped tensor
|
38 |
+
```
|
39 |
+
|
40 |
+
## Citation
|
41 |
+
```bibtex
|
42 |
+
@article{picek2024fungitastic,
|
43 |
+
title={FungiTastic: A multi-modal dataset and benchmark for image categorization},
|
44 |
+
author={Picek, Lukas and Janouskova, Klara and Sulc, Milan and Matas, Jiri},
|
45 |
+
journal={arXiv preprint arXiv:2408.13632},
|
46 |
+
year={2024}
|
47 |
+
}
|
48 |
+
```
|
49 |
+
```bibtex
|
50 |
+
@InProceedings{Picek_2022_WACV,
|
51 |
+
author = {Picek, Luk'a{s} and {S}ulc, Milan and Matas, Ji{r}{'\i} and Jeppesen, Thomas S. and Heilmann-Clausen, Jacob and L{e}ss{\o}e, Thomas and Fr{\o}slev, Tobias},
|
52 |
+
title = {Danish Fungi 2020 - Not Just Another Image Recognition Dataset},
|
53 |
+
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
|
54 |
+
month = {January},
|
55 |
+
year = {2022},
|
56 |
+
pages = {1525-1535}
|
57 |
+
}
|
58 |
+
```
|
59 |
+
```bibtex
|
60 |
+
@article{picek2022automatic,
|
61 |
+
title={Automatic Fungi Recognition: Deep Learning Meets Mycology},
|
62 |
+
author={Picek, Luk{'a}{{s}} and {{S}}ulc, Milan and Matas, Ji{{r}}{'\i} and Heilmann-Clausen, Jacob and Jeppesen, Thomas S and Lind, Emil},
|
63 |
+
journal={Sensors},
|
64 |
+
volume={22},
|
65 |
+
number={2},
|
66 |
+
pages={633},
|
67 |
+
year={2022},
|
68 |
+
publisher={Multidisciplinary Digital Publishing Institute}
|
69 |
+
}
|
70 |
+
```
|