Bagus commited on
Commit
d699ebc
1 Parent(s): 9b7bbc7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -7
README.md CHANGED
@@ -21,19 +21,80 @@ This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingfa
21
  It achieves the following results on the evaluation set:
22
  - Loss: 0.4675
23
 
24
- ## Model description
 
25
 
26
- More information needed
 
27
 
28
- ## Intended uses & limitations
29
 
30
- More information needed
 
 
 
 
 
 
 
 
 
31
 
32
- ## Training and evaluation data
 
 
 
 
33
 
34
- More information needed
35
 
36
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
  ### Training hyperparameters
39
 
 
21
  It achieves the following results on the evaluation set:
22
  - Loss: 0.4675
23
 
24
+ ## How to use/inference
25
+ Follow the example below and adapt with your own need.
26
 
27
+ ```
28
+ # ft_t5_id_inference.py
29
 
 
30
 
31
+ import sounddevice as sd
32
+ import torch
33
+ import torchaudio
34
+ from datasets import Audio, load_dataset
35
+ from transformers import (
36
+ SpeechT5ForTextToSpeech,
37
+ SpeechT5HifiGan,
38
+ SpeechT5Processor,
39
+ )
40
+ from utils import create_speaker_embedding
41
 
42
+ # load dataset and pre-trained model
43
+ dataset = load_dataset(
44
+ "mozilla-foundation/common_voice_16_1", "id", split="test")
45
+ model = SpeechT5ForTextToSpeech.from_pretrained(
46
+ "Bagus/speecht5_finetuned_commonvoice_id")
47
 
 
48
 
49
+ # process the text using checkpoint
50
+
51
+ checkpoint = "microsoft/speecht5_tts"
52
+ processor = SpeechT5Processor.from_pretrained(checkpoint)
53
+
54
+ sampling_rate = processor.feature_extractor.sampling_rate
55
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
56
+
57
+
58
+ def prepare_dataset(example):
59
+ audio = example["audio"]
60
+
61
+ example = processor(
62
+ text=example["sentence"],
63
+ audio_target=audio["array"],
64
+ sampling_rate=audio["sampling_rate"],
65
+ return_attention_mask=False,
66
+ )
67
+
68
+ # strip off the batch dimension
69
+ example["labels"] = example["labels"][0]
70
+
71
+ # use SpeechBrain to obtain x-vector
72
+ example["speaker_embeddings"] = create_speaker_embedding(audio["array"])
73
+
74
+ return example
75
+
76
+
77
+ # prepare the speaker embeddings from the dataset and text
78
+ example = prepare_dataset(dataset[30])
79
+ speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
80
+
81
+ # prepare text to be converted to speech
82
+ text = "Saya suka baju yang berwarna merah tua."
83
+
84
+ inputs = processor(text=text, return_tensors="pt")
85
+
86
+
87
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
88
+ speech = model.generate_speech(
89
+ inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
90
+
91
+ sampling_rate = 16000
92
+ sd.play(speech, samplerate=sampling_rate, blocking=True)
93
+
94
+ # save the audio, signal needs to be in 2D tensor
95
+ torchaudio.save("output_t5_ft_cv16_id.wav", speech.unsqueeze(0), 16000)
96
+
97
+ ```
98
 
99
  ### Training hyperparameters
100