--- base_model: microsoft/wavlm-base-plus tags: - generated_from_trainer model-index: - name: wavlm_base-plus_emodb results: [] --- # wavlm_base-plus_emodb This model is a fine-tuned version of [microsoft/wavlm-base-plus](https://huggingface.co/microsoft/wavlm-base-plus) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1390 - Uar: 0.6759 - Acc: 0.7426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Uar | Acc | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 0.31 | 1 | 1.3804 | 0.3148 | 0.4559 | | No log | 0.62 | 2 | 1.3739 | 0.2593 | 0.4118 | | No log | 0.92 | 3 | 1.3586 | 0.25 | 0.4044 | | 1.4729 | 1.23 | 4 | 1.3445 | 0.25 | 0.4044 | | 1.4729 | 1.54 | 5 | 1.3265 | 0.3056 | 0.4485 | | 1.4729 | 1.85 | 6 | 1.3054 | 0.4167 | 0.5368 | | 1.3428 | 2.15 | 7 | 1.2888 | 0.4352 | 0.5515 | | 1.3428 | 2.46 | 8 | 1.2719 | 0.4630 | 0.5735 | | 1.3428 | 2.77 | 9 | 1.2511 | 0.5093 | 0.6103 | | 1.2214 | 3.08 | 10 | 1.2465 | 0.5833 | 0.6691 | | 1.2214 | 3.38 | 11 | 1.2409 | 0.5370 | 0.6324 | | 1.2214 | 3.69 | 12 | 1.2366 | 0.5000 | 0.6029 | | 1.2214 | 4.0 | 13 | 1.2346 | 0.5185 | 0.6176 | | 0.7965 | 4.31 | 14 | 1.2130 | 0.6574 | 0.7279 | | 0.7965 | 4.62 | 15 | 1.1881 | 0.7222 | 0.7794 | | 0.7965 | 4.92 | 16 | 1.1775 | 0.7407 | 0.7941 | | 0.9522 | 5.23 | 17 | 1.1707 | 0.7315 | 0.7868 | | 0.9522 | 5.54 | 18 | 1.1667 | 0.7222 | 0.7794 | | 0.9522 | 5.85 | 19 | 1.1636 | 0.7130 | 0.7721 | | 0.8702 | 6.15 | 20 | 1.1628 | 0.7037 | 0.7647 | | 0.8702 | 6.46 | 21 | 1.1557 | 0.7037 | 0.7647 | | 0.8702 | 6.77 | 22 | 1.1444 | 0.7130 | 0.7721 | | 0.7803 | 7.08 | 23 | 1.1378 | 0.7130 | 0.7721 | | 0.7803 | 7.38 | 24 | 1.1331 | 0.7130 | 0.7721 | | 0.7803 | 7.69 | 25 | 1.1339 | 0.7037 | 0.7647 | | 0.7803 | 8.0 | 26 | 1.1363 | 0.6944 | 0.7574 | | 0.5654 | 8.31 | 27 | 1.1382 | 0.6759 | 0.7426 | | 0.5654 | 8.62 | 28 | 1.1394 | 0.6759 | 0.7426 | | 0.5654 | 8.92 | 29 | 1.1395 | 0.6759 | 0.7426 | | 0.7148 | 9.23 | 30 | 1.1390 | 0.6759 | 0.7426 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.13.3