File size: 2,561 Bytes
785faef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: mit
base_model: xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- conll2003job
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_xlm-roberta-large-finetuned-conlljob04
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003job
type: conll2003job
config: conll2003job
split: validation
args: conll2003job
metrics:
- name: Precision
type: precision
value: 0.961673640167364
- name: Recall
type: recall
value: 0.9670144732413329
- name: F1
type: f1
value: 0.964336661911555
- name: Accuracy
type: accuracy
value: 0.9935750165491998
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_xlm-roberta-large-finetuned-conlljob04
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the conll2003job dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0420
- Precision: 0.9617
- Recall: 0.9670
- F1: 0.9643
- Accuracy: 0.9936
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1566 | 1.0 | 896 | 0.0403 | 0.9425 | 0.9542 | 0.9483 | 0.9911 |
| 0.0319 | 2.0 | 1792 | 0.0359 | 0.9523 | 0.9571 | 0.9547 | 0.9922 |
| 0.0156 | 3.0 | 2688 | 0.0356 | 0.9594 | 0.9625 | 0.9609 | 0.9929 |
| 0.01 | 4.0 | 3584 | 0.0377 | 0.9604 | 0.9672 | 0.9638 | 0.9934 |
| 0.0058 | 5.0 | 4480 | 0.0398 | 0.9618 | 0.9662 | 0.9640 | 0.9934 |
| 0.0034 | 6.0 | 5376 | 0.0420 | 0.9617 | 0.9670 | 0.9643 | 0.9936 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|