Bai-YT commited on
Commit
ab88f61
1 Parent(s): fb8e922

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -1
README.md CHANGED
@@ -5,7 +5,7 @@ license: cc-by-nc-nd-4.0
5
  # ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation
6
 
7
  This page shares the official model checkpoints of the paper \
8
- "Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation" \
9
  from Microsoft Applied Science Group and UC Berkeley \
10
  by [Yatong Bai](https://bai-yt.github.io),
11
  [Trung Dang](https://www.microsoft.com/applied-sciences/people/trung-dang),
@@ -13,6 +13,7 @@ by [Yatong Bai](https://bai-yt.github.io),
13
  [Kazuhito Koishida](https://www.microsoft.com/applied-sciences/people/kazuhito-koishida),
14
  and [Somayeh Sojoudi](https://people.eecs.berkeley.edu/~sojoudi/).
15
 
 
16
  **[[Preprint Paper](https://arxiv.org/abs/2309.10740)]**     
17
  **[[Project Homepage](https://consistency-tta.github.io)]**     
18
  **[[Code](https://github.com/Bai-YT/ConsistencyTTA)]**     
@@ -22,6 +23,11 @@ and [Somayeh Sojoudi](https://people.eecs.berkeley.edu/~sojoudi/).
22
 
23
  ## Description
24
 
 
 
 
 
 
25
  This work proposes a *consistency distillation* framework to train
26
  text-to-audio (TTA) generation models that only require a single neural network query,
27
  reducing the computation of the core step of diffusion-based TTA models by a factor of 400.
 
5
  # ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation
6
 
7
  This page shares the official model checkpoints of the paper \
8
+ *ConsistencyTTA: Accelerating Diffusion-Based Text-to-Audio Generation with Consistency Distillation* \
9
  from Microsoft Applied Science Group and UC Berkeley \
10
  by [Yatong Bai](https://bai-yt.github.io),
11
  [Trung Dang](https://www.microsoft.com/applied-sciences/people/trung-dang),
 
13
  [Kazuhito Koishida](https://www.microsoft.com/applied-sciences/people/kazuhito-koishida),
14
  and [Somayeh Sojoudi](https://people.eecs.berkeley.edu/~sojoudi/).
15
 
16
+ **[[🤗 Live Demo](https://huggingface.co/spaces/Bai-YT/ConsistencyTTA)]**     
17
  **[[Preprint Paper](https://arxiv.org/abs/2309.10740)]**     
18
  **[[Project Homepage](https://consistency-tta.github.io)]**     
19
  **[[Code](https://github.com/Bai-YT/ConsistencyTTA)]**     
 
23
 
24
  ## Description
25
 
26
+ **2024/06 Updates:**
27
+
28
+ - We have hosted an interactive live demo of ConsistencyTTA at [🤗 Huggingface](https://huggingface.co/spaces/Bai-YT/ConsistencyTTA).
29
+ - ConsistencyTTA has been accepted to ***INTERSPEECH 2024***! We look forward to meeting you in Kos Island.
30
+
31
  This work proposes a *consistency distillation* framework to train
32
  text-to-audio (TTA) generation models that only require a single neural network query,
33
  reducing the computation of the core step of diffusion-based TTA models by a factor of 400.