Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: other
|
3 |
license_name: other
|
|
|
1 |
+
# Malayalam to English Transliteration Model
|
2 |
+
|
3 |
+
This repository contains a model for transliterating Malayalam names to English names using LSTM and Attention mechanisms.
|
4 |
+
|
5 |
+
## Dataset
|
6 |
+
|
7 |
+
The dataset used for training this model is a subset of the [Santhosh's English-Malayalam Names dataset](https://huggingface.co/datasets/santhosh/english-malayalam-names). Only a small subset of the large dataset was used for training.
|
8 |
+
|
9 |
+
The code for training and testing the model, along with the subset of the dataset used, is available in the following GitHub repository:
|
10 |
+
- [GitHub Repository](https://github.com/Bajiyo2223/ml-en_trasnliteration/blob/main/ml_en_transliteration.ipynb)
|
11 |
+
|
12 |
+
You can run and use the train and test datasets from this GitHub link. The dataset is located in a folder called `dataset`.
|
13 |
+
|
14 |
+
## Model Files
|
15 |
+
|
16 |
+
- `saved_model.pb`: The trained model saved in TensorFlow's SavedModel format.
|
17 |
+
- `source_tokenizer.json`: Tokenizer for Malayalam text.
|
18 |
+
- `target_tokenizer.json`: Tokenizer for English text.
|
19 |
+
- `variables.data-00000-of-00001`: Model variables.
|
20 |
+
- `variables.index`: Index for model variables.
|
21 |
+
|
22 |
+
## Model Architecture
|
23 |
+
|
24 |
+
The model architecture consists of the following components:
|
25 |
+
- **Embedding Layer**: Converts the input characters to dense vectors of fixed size.
|
26 |
+
- **Bidirectional LSTM Layer**: Captures the sequence dependencies in both forward and backward directions.
|
27 |
+
- **Attention Layer**: Helps the model focus on relevant parts of the input sequence when generating the output sequence.
|
28 |
+
- **Dense Layer**: Produces the final output with a softmax activation function to generate character probabilities.
|
29 |
+
|
30 |
+
## Preprocessing
|
31 |
+
|
32 |
+
- **Tokenization**: Both source (Malayalam) and target (English) texts are tokenized at the character level.
|
33 |
+
- **Padding**: Sequences are padded to ensure uniform input lengths.
|
34 |
+
|
35 |
+
## Training
|
36 |
+
|
37 |
+
- **Optimizer**: Adam
|
38 |
+
- **Loss Function**: Sparse categorical cross-entropy
|
39 |
+
- **Metrics**: Accuracy
|
40 |
+
- **Callbacks**: EarlyStopping and ModelCheckpoint to save the best model during training.
|
41 |
+
|
42 |
+
## Results
|
43 |
+
|
44 |
+
The model achieved the following performance on the test set:
|
45 |
+
- **Test Loss**: `insert_test_loss`
|
46 |
+
- **Test Accuracy**: `insert_test_accuracy`
|
47 |
+
|
48 |
+
## Usage
|
49 |
+
|
50 |
+
To use the model for transliteration:
|
51 |
+
|
52 |
+
```python
|
53 |
+
import tensorflow as tf
|
54 |
+
from keras.preprocessing.sequence import pad_sequences
|
55 |
+
import numpy as np
|
56 |
+
import json
|
57 |
+
|
58 |
+
# Function to convert sequences back to strings
|
59 |
+
def sequence_to_text(sequence, tokenizer):
|
60 |
+
reverse_word_map = dict(map(reversed, tokenizer.word_index.items()))
|
61 |
+
text = ''.join([reverse_word_map.get(i, '') for i in sequence])
|
62 |
+
return text
|
63 |
+
|
64 |
+
# Load the model
|
65 |
+
model = tf.keras.models.load_model('path_to_your_model_directory')
|
66 |
+
|
67 |
+
# Load tokenizers
|
68 |
+
with open('source_tokenizer.json') as f:
|
69 |
+
source_tokenizer_data = json.load(f)
|
70 |
+
source_tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(source_tokenizer_data)
|
71 |
+
|
72 |
+
with open('target_tokenizer.json') as f:
|
73 |
+
target_tokenizer_data = json.load(f)
|
74 |
+
target_tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(target_tokenizer_data)
|
75 |
+
|
76 |
+
# Prepare the input text
|
77 |
+
input_text = "your_input_text"
|
78 |
+
input_sequence = source_tokenizer.texts_to_sequences([input_text])
|
79 |
+
input_padded = pad_sequences(input_sequence, maxlen=100, padding='post') # Adjust maxlen if needed
|
80 |
+
|
81 |
+
# Get the prediction
|
82 |
+
prediction = model.predict(input_padded)
|
83 |
+
predicted_sequence = np.argmax(prediction, axis=-1)[0]
|
84 |
+
predicted_text = sequence_to_text(predicted_sequence, target_tokenizer)
|
85 |
+
|
86 |
+
print("Transliterated Text:", predicted_text)
|
87 |
---
|
88 |
license: other
|
89 |
license_name: other
|